
manual

iL_BAS16
BASIC compiler for PIC microcontroller

compiler release 5.5 - xx

compiled: November, 18. 2004

printed:26.11.04

PIC is a registered trademark of Microchip Technology Inc.

(c) Copyright
Ing.Büro Stefan Lehmann
Fürstenbergstraße 8a
D-77756 Hausach

Tel. ++49 (0)7831 452
Fax ++49 (0)7831 96 428
eMail: SL@iL-online.de
www.iL-online.de

Inhaltsverzeichnis

General
 Introduction .. 1
 Installation for Windows .. 2
 Installation for DOS .. 4
 Integration in MPLAB (5.2 only) 5
 brief description of iL_BAS16 13
 Project - file .. 15
 First time user problems .. 16
 Editor .. 17
 Product info .. 18

BASIC instructions overview
 BASIC instructions overview 19

Compiler switch
 Compiler switches ... 21
 $CCON und $CCOFF .. 22
 $IF $ELSE $ENDIF .. 23
 $INCLUDE .. 24
 $LIST ... 25
 $LRANGE ... 26
 $LST2COD .. 27
 $NCALDEF .. 28
 $OBJ2HEX .. 29
 $OLDVAR ... 30
 $WDTUSR ... 31
 DEFINE variable, constant 32
 DEFINE device ... 33
 DEFINE other .. 35
 DATE .. 36
 TIME .. 37
 XTAL .. 38

Program structure
 Assembler Code .. 39
 INTERRUPTS (general) ... 40
 Labels .. 43
 Constants ... 44
 Variables ... 45
 To program computing-time-optimized 50
 Variable internal ... 51
 Table of usable variable addresses 53
 IF constructions .. 58
 Mathematical operators .. 59
 Logical operators ... 61
 32-bit arithmetic introduction 62
 Comparators ... 63
 Program memory pages (iL_PAGE0) 64

BASIC instruction set
 ADDELAY .. 65
 ADINP ... 66
 ASM ... 69
 BITPOS .. 70

i

Inhaltsverzeichnis

 CALVAL ... 71
 CLOCK and CLOCK1 ... 72
 CURSOFF ... 73
 CURSON .. 74
 BINTOASC .. 75
 BINTOBCD .. 76
 BINTODEC .. 77
 DATA ... 78
 DEC ... 79
 DELAY ... 80
 DOZE .. 81
 DTMFOUT ... 82
 EEDATA ... 84
 END ... 85
 ENDASM .. 86
 ERR ... 87
 FOR TO NEXT ... 88
 FREQIN .. 89
 GOSUB ... 90
 GOTO .. 91
 HIGH .. 92
 I2CDELAY .. 93
 I2CHARDS .. 94
 I2CINIT ... 96
 I2CRD ... 98
 I2CREAD ... 99
 I2CSLAVE ..100
 I2CSP ...101
 I2CST ...102
 I2CWR ...103
 I2CWRITE ..104
 IF-THEN-ELSE ..105
 INC ...106
 INKEY ...107
 INP ...109
 INPUT ...110
 INTERRUPT ...111
 INTEND ..112
 INTPROC ...113
 LCDCLEAR ..114
 LCDDELAY ..115
 LCDINIT ...116
 LCDTYPE ...118
 LCDWRITE ..120
 LET ...122
 LOCATE ..123
 LOFREQ ..124
 LOOKDN ..125
 LOOKUP ..126
 LOW ...127
 ON GOSUB ..128
 ON GOTO ...129
 OUTP ..130
 OUTPUT ..131
 PEEK ..132

ii

Inhaltsverzeichnis

 POKE ..133
 PRINT ..134
 PULSIN ..135
 PULS_IN ...136
 PULSOUT ...137
 PWM ...138
 RANDOM ..139
 RCTIME ..140
 READDATA ..142
 READ ...143
 REM ...144
 RES ...145
 RESTORE ...146
 RETURN ..147
 REVERS ..148
 SERIN ...149
 SEROUT ..151
 SET ...152
 SETBAUD ...153
 SLEEP ...154
 SOUND ...155
 SWAP ..156
 TOGGLE ..157
 TRIS ..158
 TXDDELAY ..159
 WAIT ..160
 WRITE ...161

Assembler
 ASSEMBLER (general) ...162
 Assembler directives ..163
 PIC assembler basic instruction set167

Simulator
 Simulator (general) ...170
 Getting started ...173
 Simulator commands ..174

Utility
 BaudCalc ..179

Appendix I
 DEFAULT.EQU ...180

Appendix Ia
 Error codes ...199

Appendix III
 Supported PICs ..201

Appendix IV
 FAQs ..202

iii

General

 Introduction

1

This manual is for all four iL_BAS16compiler versions which are available (iL_BAS16SES,iL_BAS16STD, iL_BAS16SEP and

iL_BAS16PRO). The professional version iL_BAS16PRO supports almost every device of Microchip's PIC12Xxx and

PIC16Xxx family. iL_BAS16PRO has been developed for professional use. iL_BAS16STD has a perfect price

performance ratio and is excellent for hobbyists. iL_BAS16SES and iL_BAS16SEP are low price starter versions for those

who hesitate and don't want to spend too much money. Our fair upgrade policy minimizes your risk. For upgrading to the

higher version the price of your old version reduces the price of the new version (upgrade STD to SEP is not available). All

supported PIC devices are listed in appendix III "supported devices"

Microchip's microcontroller family PIC12C5xx, PIC12C6xx, PIC16C5x, 16C7x, 16C8x and 16F8x replaces a lot of older

circuits with standard logic ic, but also older systems whoes microprocessor runs out of production or isn't up to date. The

instruction set of these microcontrollers is small, powerful and easy to learn. This garantees the phenomenal success. We,

the Ingenieurbuero Lehmann, started in designing developping tools for these microcontrollers. The goal was to create a

reasonably priced tool, and we got it. All our daily experience in PIC applications since 1992 results in iL_BAS16. High

performance and an excellent code generator turns this compiler into a usefull and professional tool. New PICs will be added

to the long list of supported devices. In case of trouble we will help you with a qualified support.

The BASIC compiler iL_BAS16xxx has been developed under the attention of the small, and sometimes tiny program

memory. Questions like: "does it makes sens to use a compiler for such small program memories" can be answered with

"yes". Sure there is some code overhead when using compilers. But this overhead could be minimized by code optimization.

iL_BAS16xxx uses three different ways of code optimization. First, redundant code is eliminated. Second, only used parts of

the runtime library are linked to the final program. Third, the compiler iL_BAS16xx generates various codes. For example: IF

VAR=0 THEN generates totally different codes as IF VAR < 1 THEN. The compiler's capability to produce such different

codes is not simply done, but needs a lot of knowledge of the PICs and compilers internas .

iL_BAS16xxx is developped for Microchips PIC family exclusivly. Therefore it is optimized to the PICs hard- and software

internas.

 iL_EDy is an integrated development enviroment for the compiler iL_BAS16 and its features. These are the PIC assembler

iL_ASS16, the PIC simulator iL_SIM16 (still DOS) and the PIC programer iL_PRG16. Along with the compiler versions

iL_BAS16SEP and iL_BAS16PRO the program iL_PAGE0.EXE is delivered. This module is necessary to calculate the long

calls and long jumps in PIC devices that have more than 2k words of program memory. iL_EDy has 8 pages. The first page is

for the main program. Its name is used by iL_EDy for calling the compiler, assembler etc. Page 8 is for the error list file. All

other pages are for include files or the documentation during developing.

 The PIC BASIC compiler iL_BAS16 is optimized for Microchips PIC12Xxx and PIC16Xxx family. Its characteristics are many

powerful instructions. The generated code is compact and fast. So in most cases you don't need assembler inline to

accelerate execution time.

 The compiler generates waiting loops for e.g. timing of serial i /o. You don't need to calculate the exact values

for these loops, this is the compiler's job. To do that, you tell the compiler the frequency of the xtal build in your

application. All calculations the compiler does are optimized to 4 MHz. Using other xtals, especially with lower

frequency difference of 10% or more, may occur.

!!! IMPORTANT !!!

Because of truncation calculation rounding errors will occur. These errors have an effect to measuring times or

output frequencies.

!!!!

General

 Installation for Windows

2

Installation for Windows:

 iL_BAS16 will be delivered on CD or email. The files are unpacked on the CDs except the Micochip data-sheets in the sub-

directory DOC. In case of email-delivering all files are packed and the data sheets are missing. They can be downloaded

easily from the internet. Because the names of the data-sheets are only composed of numbers there is no logical

connection between the data-name and the described PIC. Which file you have to load down from internet you can find at the

file PIC_LIT.LST.

If the software is available in a packed form, it has to be unpacked at frist. Some unzip programs support the start of packed

files. In case you shoulnd't have this opportunity unzip a new temporary subdirectory. The CDs don't have any auto boot. To

start the installation open the explorer by clicking on INSTALL.EXE.

At the end all files and subdirectories will be copied in a selected directory. In case of having activated "automatical link on

desktop" it will be created now. There will be no other modifications or entries exept the subdirectory and the link. Also the

modification file will stay in this local directory. So the compiler is easiy been removed out of the computer by deleting the

directory and the link. Then check if all files are not "read-only".

The following windows appear.

General

 Installation for Windows (cont.)

3

You will start the program-IDE by clicking at your link on your desktop or the file iL_EDy.EXE out of the explorer. You can

find the description of the editor in an own chapter.

General

 Installation for DOS

4

To install the Compiler iL_BAS16 for the operating system DOS the files can be easily copied into a directory which you have

created already. Call editor ED16x.EXE. This Editor permits to start the compiler iL_BAS16, the assembler ASS16 and , if

present, the programing device iL_PRG16 and the simulator iL_SIM16 with the help of key ALT and a function key. Of course

you can use your own editor. In case it permits a start of external programs, you can start this program by a batch file. If

necessary you have to adapt these batch files to their enviroment. Please pay attention that all programs, even your basic

source program, have to be in the same directory (at the moment only DOS-version). If you use the supplied editor ED16X,

you can start the compiler out of its surface. To do so please press key combination ALT-F4. Now a batch program will be

started, which at first compiles the compiler with the actual file in the editor. If necessary iL_PAGE0 searches for GOTOs and

CALLs beyond page bounderies. Then the assembler will be invoked immediately, which assembles the new created SRC-

file. If both compilation runs are done without mistakes you can activate the simulator (if present) with the help of the key

combination ALF-F2, to test the program. Beside testing the compiled programs in machine level you also can carry out a

high level language debugging. In doing this you need the simulator iL_SIM16 version 5.2 following.

Necessary files among others by DOS-installation:

 absolutely necessary dokumentation example programe

 Ass16c.bat Baudcalc.exe Ass16_gb.pdf Adinp.bas Asm.bas

 Bcom16.bat Default.equ Bas16_gb.pdf Data.bas Doze.bas

 Dpmi16bi.ovl Ed16x.exe Ed16x.doc Dtmfout.bas Err.bas

 Edix16x.exe Edx16x.exe Il_ass16.pdf Fornext.bas Freqin.bas

 Il_ass16.exe Il_ass16.txt Il_bas16.doc Gosub.bas High.bas

 Il_bacom.exe Il_bas16.equ Il_bas16.pdf I2cslave.bas Ifthen.bas

 Il_bas16.exe Il_bas16.idt Il_prg16.pdf Inkey.bas Input.bas

 Il_bas16.pic Il_bas16.txt Il_sim16.pdf Interrpt.bas Ltc1286.bas

 Il_prg16.cfg Il_prg16.exe Sim16_gb.pdf Pwm.bas Serin.bas

 Il_prg16.hlp Il_sim16.txt Serout.bas Wuerfel.bas

 Prg16c.bat Rtm.exe

 Sim16c.bat

You also can activate the compiler out of the DOS-surface. Enter the following command:

iL_BAS16 filename

Do not enter any file extension. The compiler converts the basic source text into an assembler program. This new created file

contains the extension .SRC and can be translated to the main machine code with the help of the assembler.

 When using the professional version iL_BAS16PRO and iL_BAS16SEP you now have to start iL_PAGE0 filename

 Invoking the assembler by calling iL_ASS16 filename . You don't have to indicat any extension by giving the file name.

 Hint:

ED16X can't handle any file out of the directory limits that means the editor has to be in the same subdirectory as the file to

be edited. The full version EDX doesn't have that restriction and also makes full use of the complete heap storage. That

makes it possible to use files with up to 6500 lines.

General

 Integration in MPLAB (5.2 only)

5

Now iL_BAS16 can be easily annexed to the developement enviroment MPLAB (from version 5.2 following) of Microchip.

Carry out following steps:

- Install MPLAB starting from version 5.2, if you haven't already done.

- Install Windows-version of iL_BAS16.

- Copy the files iL_BAS.MTC and TLiLPic.INI manually out of the directory of the compiler into the directory of MPLAB.

- Start MPLAB.

- In case you haven't already installed a project, do it now.

 - Select Project and topic Install Language Tool...

 - Chose Language Suite and select iL-Lehmann iL_BAS.

 - The right tool name appears self-employed.

 - At Executable enter file iL2MP.EXE incl. path name, in which the compiler is installed.

 - Activate Windowed (very important!).

 - Confirm the input with OK.

General

 Integration in MPLAB (5.2 only) (cont.)

6

 - Choose under project the point Edit Project... .

General

 Integration in MPLAB (5.2 only) (cont.)

7

 - In case you already have installed a project in the window, Target Filename appears the corresponding Hex-file.

 - The boxes Include Path, Library Path and Left Script Path remain empty.

- When ???? choose, wether you just want to work with the simulator or also with the emulator.

 - In the Language Tool Suite again you have to choose iL-Lehmann iL_BAS

 - In the window Project Files you can find the file which is noted under the target filename. Press Add Node... .

General

 Integration in MPLAB (5.2 only) (cont.)

8

 - In the box Filename insert the file which it noted under the target filename with the extension BAS

General

 Integration in MPLAB (5.2 only) (cont.)

9

- This input apperars in the window ProjectFiles.

General

 Integration in MPLAB (5.2 only) (cont.)

10

 - Confirm with OK . The integration of iL_BAS16 in MPLAB is finished.

 - Indicate the switch $LST2COD and $OBJ2HEX in your BASIC-source-text. With this you create a COD-file, which

 MPLAB needs for symbolic debugging.

 - If you activate Make Project , Build All or Build Node under Project the compiler will be started automatically.

General

 Integration in MPLAB (5.2 only) (cont.)

11

When compiling is successful a MPLAB system window will appear.

General

 Integration in MPLAB (5.2 only) (cont.)

12

 If not, it means searching mistakes !!!

General

 brief description of iL_BAS16

13

Legal questions:

This shareware version corresponds to a full version with a limitation of the module to the PIC 16C83. The shareware version

is allowed to be copied completely and to be distributed to other customers. The use in commercial business is limitated to

two projekts. So this software can be tested extensively.

The complete version of this programm is liable to the copyright and is therfore not allowed to be copied. Only licencees are

allowed to make backup copies. Contraventions are criminally punishable.

The Compiler:

This compiler translates a BASIC program into machine language. At the same time it tries to optimate the result.

Redundante commands will be removed as far as possible. However it could be possible to optimize the result manually

because the check up will take part just within one function. Is there a redundant code between two functions it won't be

removed.The runtime routine will only be included to the program when a corresponding call is really done.

The actually availabe standard version iL_BAS16STD only supplies the PIC12C508, PIC16C54 and 16C55, PIC16C64,

PIC16C71 and PIC16C84 / 16F84. The calculation of program jumps over the page boundaries is not supported. You also

can implement a time base at these interrupt capable modules. To insert own interrupt service routines is possible as with the

professional version.

The provessional versrion supports the PIC 12C508, 12C509,16C53 - 16C58, 16C61 - 16C66, 16C71 - 16C74, 16C83 -

16C84, 16CF84 and 16F87x. Otherones will follow. Because implemantation of devices with different hardware resources is

quite complicate it will be realised successively.Here I'd like to encourage you to let me know your kind of solutions. The

additional RAM-memory of the 16C57 can be used as data-array (see variables).

 Updates and Upgrades:

Like other software products the functions of the BASIC-Compiler iL_BAS16 will be modified and completed permanently.

Our cost-effective UPDATE / UPGRADE-service enables you continually to work with the recent program version.

You can find our latest news about command extension, improvments, etc. on our homepage. The Update service will be

transacted usually by email. All clients can update their products within 6 month after bying after previous consultation. After

that period the fees for an Update are between 5,- and 30,- Euro a piece. To Upgrade from standard to professionel version

will just cost the differential amount.

Fundamentals:

 Important !!!

Following restrictions are valid for the iL_BAS16:

For one line only one order or instruction

Exception REM respectively (').

Use of double point is not possible

Exception LABEL (branch mark).

No calcualtions within a statement or a function

(e.g. INC a * 2)

only variables and constants.

General

 brief description of iL_BAS16 (cont.)

14

Arithmethic and logical links are not allowed in comparing-operations of IF- inquiries.

They have to be made before an IF-instruction.

When using symbols or labeles (also variable namens, branch marks, constant names) then:

they must begin with letters and be at least 2 character long

the first 16 characters are significant

except the first characters you also can use numbers and "_"

mutated vowels are allowed

There's no distinction between upper- and lowercase letters.

Never change the OPTION register!

First time user problems

Here you can find most of the questions of beginners and answers. Other questions and answers you can find at chapter

 Problem 1

How can I use together the BASIC-Compiler iL_BAS16 and the programing device of Microchip?

In the Basic-program you have to set the switch $LIST /M_OBJ. The created HEX-file will be loaded into the programing

software of Microchip. Then the configurations (WDT, OSC, e.g.) must be set manually.

Problem 2

Some pins of the PIC 12C508 don't work correctly.

It's important to know that special pins of some modules are only allowed to work in one special direction (=dedicated pins).

There's also the case that changes also have to be done in another registers beside the TRIS-register. This doesn't happen

automatically by the compiler. You have to program it. Some things can be explained by reading the data sheets of the

corresponding processor.

Dedicated pins are also found at other pics!

General

 Project - file

15

A project consists of one or more (up to 8) files. By opening a new project a new project file will be set up in the directory of

the editor iL_EDy. The new file includes beside the 8 file names also their attributs.

 Hint !!!

At the moment the project name shouldn't have more than 8 characters (DOS-convention), because the simulator is a DOS-

program which can not handle files and directoray names with more than 8 characters.

At the same time the new project name will be proposed as the new file name for the first map. The extension which is

proposed is BAS. The name of the first map will be handed over to the compiler and assembler without the extension. Thess

programs complet the name with BAS (compiler iL_BAS16), SRC (Assembler iL_ASS16, Pagemodul iL_PAGE0), LST

(simulator iL_SIM16) and OBJ (programing device iL_PRG16).

General

 First time user problems

16

Here you can find most of the questions of beginners and answers. Other questions and answers you can find at chapter

FAQs.

 Problem 1

How can I use the BASIC-Compiler iL_BAS16 together with the programing device of Microchip?

In the Basic-program you have to set the switch $LIST /M_OBJ. The created HEX-file will be loaded into the programing

software of Microchip. Then the configurations (WDT, OSC, e.g.) must be set manually.

Problem 2

Some pins of the PIC 12C508 don't work correctly.

It's important to know that special pins of some modules are only allowed to work in one special direction. There's also the

case that changes also have to be done in another registers beside the TRIS-register. This doesn't happen automatically by

the compiler. You have to program it. Some things can be explained by reading the data sheets of the corresponding

processor.

General

Editor

17

When starting a new project it is useful to define the project's name first. After writing the program you can save them in

different directories under the main topic FILE. The main file must be in the first page because its name is used as a

parameter when the compiler, simulator etc is invoked. Page 2 to 7 are for include files or for documentation. The error file is

listed in page 8.

Administration of all projects is done by project files which are in the same directory as iL_EDY. When starting a new project

iL_EDy generates the name of the first page automatically. This name consists of the project's name plus the extension

BAS. It can be overwritten when it is saved for the first time.

Important and often used topics can be reached by separate buttons. If you use the topic "PassCompiler" you must invoke

each module in the right order. 1.) iL_BAS16; 2.) iL_Page0 if SEP or PRO version and 3.) iL_ASS16. Topic "Compiler" does

all these actions automatically in the right order. It is better to use this function.

ATTENTION!!!

Invoking the compiler, simulator, programer etc means that all files will be saved automatically. Also the project files will be

updated.

Since January 2004 a subset of WORDSTAR compatible key functions are available.

CTRL-Q and CTRL-K

CTRL-K 1..9 set/clear bookmark

CTRL-K B mark start of block

CTRL-K C copy block

CTRL-K K mark end of block

CTRL-K S save open window

CTRL-K T mark word

CTRL-K V move block

CTRL-K Y delete block

CTRL-Q 1..9 jump to bookmark

CTRL-Q A search and replace

CTRL-Q F search

CTRL-Q L undo

CTRL-L search next

CTRL-N insert line

CTRL-U stop seach or replace function

CTRL-Y delete line

General

Product info

18

Four versions are available:

 Standard version: iL_BAS16STD

 Professional version: iL_BAS16PRO

 Spezial Standard (1) iL_BAS16SES

 Spezial Professional (2) iL_BAS16SEP

(1)

only for 16F84 and 16F628

(2)

only for 12F629, 16F84, 16F627, 16F628 and 16F877):

BASIC instructions overview

 BASIC instructions overview

19

ADDELAY(only 16C7x and 16F87x)

 ADINP(only 16C7x and 16F87x)

 ASM

 BINTOASC (also CONASC)

 BINTOBCD

 BINTODEC (also CONDEC)

 BITPOS

 CALVAL (only PICs with internal and activeded RC oscillator)

 CLOCK and CLOCK1(not for 12C5xx, 12E5xx and 16C5x)

 CONASC

 CONDEZ

 CURSOFF

 CURSON

 DATA(not for 12C5xx, 12E5xx and 16C5x)

 DEC

 DELAY

 DOZE

 DTMFOUT

 EEDATA

 END

 ENDASM

 ERR

 FOR-TO-NEXT

 FREQIN

 GOSUB

 GOTO

 HIGH

 I2CDELAY

 I2CHARDS (only for PIC with internal I2C module)

 I2CINIT

 I2CRD

 I2CREAD

 I2CSLAVE

 I2CSP

 I2CST

 I2CWR

 I2CWRITE

 IF-THEN-ELSE

 INC

 INKEY

 INP

 INPUT

 INTERRUPT

 INTEND

 INTPROC

 LCDCLEAR

 LCDDELAY

 LCDINIT

 LCDTYPE

 LCDWRITE

 LET

BASIC instructions overview

 BASIC instructions overview (cont.)

20

LOCATE

 LOFREQ

 LOOKDN

 LOOKUP

 LOW

 ON-GOSUB

 ON-GOTO

 OUTP

 OUTPUT

 PEEK

 POKE

 PRINT(only 16F87x)

 PULSIN

 PULS_IN

 PULSOUT

 PWM

 RANDOM

 RCTIME

 READDATA

 READ(only 12Exx, 16X8x and 16F87x)

 REM

 RES

 RESTORE

 RETURN

 REVERS

 SERIN

 SEROUT

 SET

 SETBAUD

 SLEEP

 SOUND

 SWAP

 TOGGLE

 TRIS

 TXDDELAY

 VARPTR

 WAIT

 WRITE(only 12Exx, 16X8x and 16F87x)

Compiler switch

 Compiler switches

21

Compiler switches or compiler directives are useful to controll the work of the compiler. These are instructions which tell the

compiler e.g. the oscillator frequency (XTAL) of the target hardware. Knowing this, the compiler can calculate the values for

e.g. the delays in the BASIC instruction WAIT or SERIN etc. for exact timing.

 $CCON und $CCOFF turns on and off the monitoring of an overflow in a 8 bit addition or subtraction

 $IF $ELSE $ENDIF enables a conditional compiling

 $INCLUDE links an include file to the main file

 $LIST controls the layout of the OBJ, BIN and LST files

 $LRANGE defines the range around the page bounderies for iL_PAGE0

 $LST2COD creates a COD-file, which is necessary for the symbolic debugging of (among other things) MPLAB.

 $NCALDEF suppresses the insertation of a calibration default value

 $OBJ2HEX creates beside the OBJ-file the HEX-file too

 $OLDVAR compiler works with the old variable declaration (do not use anymore)

 $WDTUSR disables the automatic insertation of a CLRWDT after each BASIC keyword. The user has to do it himself.

 DEFINE variable, constant defines symbols, constants, etc

 DEFINE device defines the cpu type

 DEFINE other defines stack, key table etc.

 DATE inserts the actual date into SRC and LST file

 TIME inserts the actual time into SRC and LST file

 XTAL crystal frequency of the target hardware

Compiler switch

$CCON und $CCOFF

22

8 bit addition/subtraction is not realized with the help of routines in the runtime library, but it is code directly. In case of an

overflow error the overflow bit in the ERR variable is set. Often, this is not necessary. $CCOFF suppresses that overflow

check. To give you the choice to switch on/off this overflow check you can set these compiler switches anywhere in your

program to optimize code length and execution speed.

You can use $CCON and $CCOFF in your program as often as you like to. So a deliberated activation at a special position in

the program is possible while the rest of the program will be generated compactly. The code created after $CCOFF will not

execute the carryover. When $CCON is arrived the carry-bit will be copied into the ERR-variable.

8 bit multiplication/division and all 16 and 32 bit arithmetics are not effected by $CCON and $CCOFF. In these cases the

overflow bit is checked anyway.

Compiler switch

$IF $ELSE $ENDIF

23

The compiler switches$IF cond, $ELSE and $ENDIF allow a conditional comiling. So you have the possibility to let translate

the programcode between $IF and $ELSE respectively $ENDIF by setting the condition cond . Not having set this condition

the programcode just will be translated between $ELSE and $ENDIF. cond is a constant defined by DEFINE. When the

value is 1 or another value <>0 the condition is true and the $IF bloc will be carried out. The condition will be not true if the

value is 0. In this case the $ELSE bloc will, if available, be worked out.

Example 1:

The line between $IF and $ENDIF shall be executed.

$IF switch

LET ...

$ENDIF

Example 2:

The line between $ELSE and $ENDIF shall be executed.

$IF switch

LET value = 10

$ELSE

LET value = 20

$ENDIF

Attention !

 Nesting is not possible.

Compiler switch

 $INCLUDE

24

$INCLUDE allows including a file during compilation. So you can divide good-sized projects into managable file sizes.

A lot of those good-sized projects become complex if function are far-scattered all over the whole project. Also a lot of

functions are already been tested or shall be taken over out of another program. Will all these function groups e.g.

declaration of variables, in- output- routine, and so on be put together in one module, whereas each module is availabe as a

seperate file, even the most good-sized projects will be easy to follow and easy to handle.

If the filename has no extension INC is assumed. If path and drive is missing these of the main file are assumed.

 The DEVICE-instruction including the specification of the type of processor must stand before the first $INCLUDE

otherwise you will get the error message "unknown CPU".

Compiler switch

 $LIST

25

$LIST is used to route the assembler which translates the by the comiler transtated program into an OBJ-file. Sometimes it is

necessary, to exercise an influence on the assembler for example to configure the OBJ-file the way that the PICSTART-plus

programming device of Micochip is able to read the file correctly (iL_PROG16 is using an extented format).

$LIST /M_OBJ creates a conveniant file for the PICSTART.

$LIST INHX8 creates an OBJ-file with Intel-Hex8-format (default).

$LIST INH16 creates an OBJ-file with Intel-Hex16-format.

$LIST C=xxx defines the number of characters per line in the LST-file.

$LIST BIN additionally creates a binary file (is needed by some programing devices).

$LIST BINX creates a binary file where high- and low-byte are swapped.

$LIST OBJ2HEX instead of OBJ the hexfile will get the file-ending HEX.

Compiler switch

 $LRANGE

26

$LRANGE is used to induce the compiler module iL_PAGE0 at pics with program memory which are bigger than one page

(see program-pages) that relevant arears around the page boundary is individually adjustable. So it determins how huge the

area around the page boundary shall be where a GOTO will be transformed into a LJMP respectively a CALL into a LCALL.

This individuel adaption became necessary because now and then there were constellations in the compilation which

sometimes caused a crash of the program because of the narrow boundaries (16 before and 16 after the page boundary)

iL_PAGE0 couldn't carry out the transcription into LJMP or LCALL. If there is a strange attitude of the program when it gets

bigger than one page it is helpfull to use this switch and set the value to 32 or 48.

$LRANGE 48

 Important !!!

Of course the possibilities of $LRANGE are limited. Depending on the sequence of the program, it may be, you have to

choose a very huge value. For example when the entry point of a huge subroutine is on the same page the return however

on the following one. $LRANGE has to be choosen very huge because of an unhandily positioned subroutine in the

memory. That leades to a waste of resources (here program memory space). A way out of this dilemma offers a jumptable at

the beginning of the program. The trick is letting have the subroutine only two lines and so prevent an overflow of the

memory limit within the subroutine. An example will show this:

'As near as possible at the beginning of the program:

'After the DEFINE-instruction but before

'the first BASIC-commands

GOTO MAIN 'overjump the following UPs

 UP1 GOTO UP1X

 UP1Z RETURN

 UP2 GOTO UP2X

 UP2Z RETURN

 UP3 GOTO UP3X

 UP3Z RETRUN

...

 UP1X do something

GOTO UP1Z

...

 UP2X do something

GOTO UP2Z

...

 UP3X do something

GOTO UP3Z

...

...

GOSUB UP1

...

GOSUB UP3

...

GOBUB UP2

Now it doesn't matter from where the subroutine will be started and where are the jump-in and jump-out because a GOTO

respectively LJMP sets the corresponding page bits correctly unlike RETURN. Now it's sufficient to set $LRANGE16. This is a

default-value which can be omited.

Also see Program Pages

Compiler switch

 $LST2COD

27

the compiler switch $LST2COD creates a COD-file. Beside the program code this file also contains the symbol table and the

information for the debugger respectively emulator. If you want to test the BASIC-source-text with the help of the MPLAB you

need this file.

Furthermore the compiler must create a HEX-file. You need the compiler switch $OBJ2HEX.

 Have the compiler working correctly under MPLAB you must integrate it carefully into the IDE of the MPLAB. Please read

corresponding chapter Integration to MPLAB

Compiler switch

 $NCALDEF

28

Normally the compiler creates a default-value (80H) for modules with active INTERNEN RC-OSZILLATOR which will be

programed into the module if it's a JW-type which highest memory position is deleted. Because some programing devices

won't interpret this information correctly and therefore will get a wrong value in the OSCCAL-register you can suppress this

automatic working by $NCALDEF (No CALibration DEFault).

 see also CALVAL

Compiler switch

 $OBJ2HEX

29

Some programing devices or emulator (PICSTART respectively MPLAB) need a HEX-file. The compiler iL_:BAS16 only

creates an OBJ-file. The compiler-switch $OBJ2HEX enforces the generation of such a HEC-file.

 If you like to work with MPLAB you have to pay attention to following points which are described in chaper Integration to

MPLAB

Compiler switch

 $OLDVAR

30

iL_BAS16xxx version 4 and below uses other kind of variable declaration than version 5 and higher. To compile old

programs with version 5 $OLDVAR must switch back. But take care, it only works with PIC devices which are supported by

version 1 to 4. $OLDVAR must be the first command in the program.

It is better to change the old kind of variable declaration to the new one. This is more efficent.

 new declaration

Important !!!

Please use $OLDVAR only in projects which were created with compiler version 2, 3, and 4. $OLDVAR only

works with those processortypes which generally were defined at that time. Processors which will be added

new from version 5 therefore don't work.

Compiler switch

 $WDTUSR

31

If watch-dog-timer is enabled by WDT_ON in the DEFINE DEVICE line the compiler generates a CLRWDT after each BASIC

command, automatically. There is only one exeption: an bit IF-clauses with a GOTO on itself (e.g. WAIT: IF RA,0=0 THEN

GOTO WAIT). In this case the watchdog restarts the PIC if the program waits to long in this loop. To avoid this

circumstance you should add a dummy line.

There a also some critical applications in which the author wants to place the CLRWDT commands himself. Do disable the

automatic use simply compiler switch $WDTUSR. Keep WDT_ON in DEFINE DEVICE line. Now place the BASIC keyword

CLRWDT at the right position in your program to avoid a reset by watchdog.

Compiler switch

 DEFINE variable, constant

32

DEFINE defines name of a variable or constant, defines the type of cpu and its configurations.

 Variables are defined by a name consists of at least two characters. The first must be a letter, and the address where the

value should be stored.

for example:

 DEFINE counter = $30 AS BYTE

 the memory address 30H gets the symbolic name counter.

 DEFINE sum = 49 AS WORD

 the contents of the 16 bit variable sum is stored in the memory location 31H (low byte) and 32H (high byte).

 DEFINE value = $40 AS DBLWORD

 memory capacities 40H upto 43H will be defined as 32-bit variables with the name value (also see DEFINE others).

 Constants are defined by a name, consists of at least two characters (the first must be a letter) and the desired value. To give

the compiler the ability to see the difference between the symbol of a variable and a constant an "AS CONST" is added.

e.g.

DEFINE limit = 100 AS CONST

 the compiler replaces the symbol limit by the value 100. limit is treated as a byte.

 DEFINE maximum = $4000 AS CONST

 maximum is replaced by 4000H. maximum it treated as a word.

Compiler switch

 DEFINE device

33

To define the target cpu the DEFINE DEVICE must be used. Additional parameters are put into the configuration word or

used for the right initialization.

 DEFINE DEVICE cpu_type, watchdog, code_protection, oscillator-type, ad_converter, misc

 cpu_type (depends on the compiler version and will be update continously)

12C508, 12C509, 12E518, 12E519, 12F629, 12C671, 12C672, 12E673, 12E674, 12F675, 16C505, 16C53, 16C54, 16C55,

16C554, 16C556, 16C558, 16C56, 16C57, 16C58, 16C61, 16C62, 16C62A, 16C620, 16C621, 16C622, 16E623, 16E624,

16E625, 16F627, 16F628, 16C63, 16C64, 16C64A, 16C65, 16C65A, 16C66, 16C66A, 16C67, 16C67A, 16C71, 16C710,

16C711, 16C715, 16C72, 16C73, 16C73A, 16C74, 16C74A, 16C76, 16C77, 16F818, 16F819, 16C83, 16F83, 16C84,

16F84, 16F870, 16F871, 16F872, 16F873, 16F873A, 16F874, 16F874A, 16F876, 16F876A, 16F877, 16F877A, 16F88

watchdog:

 WDT_ON = watchdog on

 WDT_OFF = watchdog out (default)

 code_protection:

 PROTECT_ON = code is read protected

 PROTECT_OFF = code can be read with the help of the programing device (default)

JW (overwites a PROTECT_ON; JW devices should never be code protected!)

 oscillator_type:

 RC_OSC = external RC circuit

 LP_OSC = xtal oscillator (low frequency)

 XT_OSC = xtal oscillator or external oscillator circuit

 HS_OSC = xtal oscillator (high frequency)

 IRC_OSC = internal RC oscillator

 ERC_OSC = extrenal oscillator (for those devices with IRC_OSC possible)

 ad_converter (only 12X67x, 16C7x and 16F87x):

 ADCFG0, ADCFG1, ADCFG2,..

setting which Pin shall work as an analog- pin and which one as a digital-pin.

(Important !!! Using the 12F629 and 12F657 the ADCFG has different allocation commandment.)

 see ADINP

 Comparator (only 12F62x, 16C62x and 16E62x):

CMCFG0, CMCFG1, CMCFG2,...

Defines how the pins shall work together with the comparators respectively which one worka as a digital-I/O.

 VRCGF = defines the value which is loaded into the VRCON-register. Among other things the reference voltage will be set.

This setting Can be changed during the program flow by writing into the VRCON-register.

 see COMPARATOR

misc (if supported):

 PWRTE_OFF = power up timer enable off

 PWRTE_ON = power up timer enable on

 MCLR_EXT = master clear is at pin MCLR

 MCLR_INT = master clear is internal generated (pin MCLR is used as i/o pin)

 RBUP_ON = weak pull up resistors on port RB are active

 RBUP_OFF = weak pull up resistors on port RB are inactive

Compiler switch

 DEFINE device (cont.)

34

GPWU_ON= changes on port GP generates a weak up (resets the cpu)

 GPWU_OFF = reset is only generated by power on and MCLR pin

 GPPU_ON = weak pull up resistors on port GP are active

 GPPU_OFF = weak pull up resistors on port GP are inactive

 BODEN_ON = brown out detect enable on

 BODEN_OFF = brown out detect enable off

 OSC2_IO = pin OSC2 is i/o pin (not clockout)

 T0CS_INT = Timer 0 clock source is derived by f/4

 T0SE0 = Timer 0 active edge is low to high transition

 T0SE1 = Timer 0 active edge is high to low transition

Compiler switch

 DEFINE other

35

DEFINE STACK = addr

16 bytes data memory in page 0 are used to store the contents of ERG, ARG1 etc, and other important registers if an

interrupt occurs.

 DEFINE SERIN = SOFT

 DEFINE SEROUT= SOFT

forces the compiler to link the software routines for the SERIN and SEROUT instruction even there is an usart beyond these

pins.

 DEFINE KEYS port, table

 initializes a 4 by 4 key matrix on port. A translation table can be added where the scancode is replaced by another code.

Scancode is from 1 to 16. Should scancode 1 be the ascii character "0", scancode 2 should be ascii "1" etc then write:

DEFINE KEYS RB, 0,"0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"

 see INKEY

DEFINE ARITH32 = address

settles the storage area where the 32-bit operations calculate their provisional result and their final result. The area contains

16 byte and also can be used otherwise. Attention !!!

Compiler switch

DATE

36

The actual date of compiling is insert in the new SRC file. After assembling this date is also in the LST file.

Compiler switch

 TIME

37

The compiler replaces this keyword in the new created SRC-file by the actual system-time. So it also appears after

assembling in the LST-file.

Compiler switch

 XTAL

38

XTAL defines the crystal frequency of the target application in MHz. The compiler uses this value to calculate the numbers of

loops in delay routines for e.g. WAIT, SERIN, SEOUT etc.

e.g

XTAL 4.0

target application runs with 4 MHz.

XTAL 0.032

target application runs with 32 kHz.

 CLK1XTAL

Using TMR1 instead TMR0 as the time base for CLOCK command (CLOCK1) it may be driven by either the internal Fosc/4

cycle or an external xtal. To define the xtal frequency for TMR1 module use CLK1XTAL.

Program structure

 Assembler Code

39

Generally it is possible to write and insert control sections in assembler code (e.g. with the BASIC-commands ASM and

ENDASM). Though usually not necessary it may be particularly useful to operate with fine tuning. If you access to hardware

resources (timer, their prescaler, interrupts, interfaces, etc.) conflicts can't be excluded because the compiler itself accesses

to some of those hardware resources. For example when using corresponding commands (CLOCK, I2CHARDS, SERIN, etc.)

or by the always enclosed default option of the compiler to the specal function register of the PIC.

To avoid such conflicts you have several alternatives for choice:

1.) Limit the assembler written code to those hardware resources which do not access to the iL_BAS16. Depending on the

PIC type you have different numbers of special functions (e.g. up to four timers). So depending on the PIC-type there may

be free resources which are not used by Basic and therefore are distributed freely.

2.) To limit the access of the compiler so that it can't access to those resources which are programed in assembler by

yourself. First you have to delete all lines which contain the corresponding presettings (special function register) out of the

default list. Then the PICs own default-settings are valued. Second: non of the concerned Basic-commands are allowed to be

used. The list "overview of basic-commands" will show you the corresponding commands (column: used resources).

The second step is not to be recommend because you need necessarily detailed knowledge of how the compiler

works.

3.) Set all corresponding registers as needed in parts of the assembler-program yourself before ending this part of the

program

 but at least before the use of the corresponing basic-commands. Reset all changed presettings corresponding to the list.

 You should be aware that some commands act continuesly (e.g. timer-interrupts).

 Read chapter ASSEMBLER

Program structure

 INTERRUPTS (general)

40

Only the following parts have interrupts: 12C67x, 16C6x, 16C7x, 16X8x and 16F87x. For an easy use of interrupts some

special keywords are implemented. These keywords are: INTERRUPT, INTPROC and INTEND. The INTERRUPT keyword

tells the compiler, that somewhere in the BASIC program is a subroutine which is only entered in case of an interrupt event.

That is the way it does the preparation to enter this routine after it has checked the internal interrupt events (CLOCK and I2C

hardware slave). The user interrupt service routine is put into the interrupt chain. Serveral registers controll the interrupt

handling. INTCON0, ADCON0, EECON0, INTCON1 etc.. In these registers you have to set and reset bits to enable and

disable the desired interrupt. The interrupt routine defined by the user is opened with INTPROC and closed with INTEND,

similar to ASM and ENDASM. This interrupt service routine (ISR) can be written in BASIC or machine language or both

mixed. Within the ISR you must check if this is the right interrupt source which released the interrupt. If yes, you must reset

the corresponding bit (interrupt flag).

There are several interrupt sources. But there is no priority order. This means that an ISR cannot be interruped. The

following

interrupt sources are available.

INT edge selectable at pin RB0

RTCC overflow of the rtcc register (255 to 0)

RB changing the input level at pin RB4 to RB7 (logical OR)

EEPROM if a write cycle is finished

ADC at the end of a conversation cycle.

All these interrupts can be enabled and disabled by setting or resetting the corresponding bit in the INTCON register.

Additionally the global interrupt enable bit (GIE) must be set to "1" that an interrupt may occur. If the controller is in sleep

mode the GIE bit defines what happens if an interrupt occurs. In case of GIE=0 a reset will be generated, if GIE is "1" the

controller continues with entering the ISR.

INT interrupt

The external interrupt input RB0/INT is sensitive for either a falling or rising edge. Which slope will release the interrupt

is defined in the option register. When the right slope is found and the INTE bit and GIE bit of the INTCON register are

set an interrupt occurs. The program branches to the ISR where the INTF bit should be checked. If not set, the interrupt

has been released by another source and the ISR should be left. But if set, first service the interrupt and then reset this bit.

This interrupt also can terminate the sleep-mode of the processor when the INTE-bit is set to 1.

RTCC interrupt

An overflow from FFH to 0 of the rtcc register will set the RTIF flag to "1". If RTIE and GIE are set, an interrupt will

be released. Then the status of the GIE-bits decides wether the process will be restarted (GIE=0, RESET) or branched to ISR.

RB interrupt

A slope at any of the inputs RB4 to RB7 will set the RBIF bit in INTCON0. Only those pins are evaluated which are

defined as inputs. An interrupt will be released if GEI and RBIE are set to "1".

ADC interrupt (only 12X67x, 16C7x and 16F87x)

At the end of a conversion cycle the ADIF bit will be set. Only if GIE and ADIE are set too an interrupt will be released.

EEPROM interrupt (only 16X8x and 16F87x)

If a write cycle of the internal eeprom is finished, the EEIF bit is set. An interrupt will be released if GEI a EEIE are

set to "1".

Saving and restoring the internal registers like W, STATUS, PC, PCLATH, FSR, ERG, ARG1 etc is handled by the compiler.

In case you have not got enough experience you should use the STACK define instruction to save all registers. In some

cases, where no compiler register (ERG, ARG1 etc) is used, only W, STATUS, PC etc must be saved.

Program structure

 INTERRUPTS (general) (cont.)

41

What happens if an interrupt occurs?

If an interrupt occurs the PIC finishes the actual instruction and branch with a self generated call instruction to address 0004.

But this only happens, when GIE and the corresponding interrupt enable flag is set. The compiler puts a goto instruction to

the label $CLK to this address. If the clock instruction is part of the program, the timer 0 interrupt is served here. After

finishing this isr the program enters the users isr. These isr's are the lines between INTPROC and ENDPROC. This can be

BASIC instruction or assembler instruction when ASM and ENDASM is used.

To save the W- and Status-register you can use following programseqency:

 push movwf temp_w ;win a ram-cell

swapf status,w ;statusregister in W

movwf temp_s ;and in a ram-cell

 pop swapf temp_s,w ;rebuilt status register

movwf status

swapf temp_w ;W-register

swapf temp_w,w

These routines will be automatically included by the compiler as soon as the CLOCK-, I2CHARDS- or the

interrupt-controlled SERIN-command occurs in the program.

The INTCON0 register

In this register the several interrupt sources can be enabled or disabled individually by setting or resetting the

corresponding bit. All interrupts can be masked individually. The GIE bit is the global interrupt enable bit.

(The location of these bits may be various).

The contents of the INTCON-register can be different from module to module. In some cases you have to take

into account the PIE register! In case of doubt please see the corresponding data sheet of the producer.

 bit 7 GIE Global Interrupt Enable, 0=disable, 1=enable

16C7x:

 bit 6 ADIE AD conversation ready, 0=disable adc interrupt, 1=enables adc interrupt

16C8x:

 bit 6 EEIE EEPROM write cycle finished, 0=disable, 1=enable

 bit 5 RTIE 0=no timer 0 interrupts, 1=timer 0 overflow (FF > 0) generates an interrupt

 bit 4 INTE 0= no interrupt on RB0 HL or LH transition, 1=enables this interrupt (slope selected by

option register)

 bit 3 RBIE 0=no interrupt on RB4 to RB7 change, 1= any change on RB4 to RB7 generates an

interrupt

 bit 2 RTIF 1 if timer 0 generates an interrupt, must be reset by software

 bit 1 INT interrupt from RB0

 bit 0 RB interrupt from change on RB4 to RB7

The interrupt flags are set regardless of the interrupt enable bits. So these bits are also useful for polling.

The INTCON1-register

16C7x ADCON0 (08H)

 bit 7 ADCS1

 bit 6 ADCS0

 bit 5 res.

Program structure

 INTERRUPTS (general) (cont.)

42

bit 4 CHS1

 bit 3 CHS0

 bit 2 GO/DONE

 bit 1 ADIF set, if the AD-modifier is ready the software will be reset

 bit 0 ADON

16X8x EECON1 (88H)

 bit 7 res

 bit 6 res

 bit 5 res

 bit 4 EEIF

 bit 3 WRERR set, when write cycle is finished successing reset by software

 bit 2 WREN

 bit 1 WR

 bit 0 RD

 IMPORTANT!!!

The main problem of the PIC interrupts are the missing push and pop instructions. In case of an interrupt, a complex BASIC

instruction, which uses the compiler registers ERG, ARG1 etc, should be interrupted in such a way, that none of these

registers are disturbed. E.g. the BASIC instruction LET Z1 = T1 * V1 is in process. The registers ERG, ARG1 etc are used.

Also parts of the runtime library are used, too. Many small steps are necessary to do this job. Now, during the process an

interrupt occurs. The processor finishes the actual assembler instruction which is a part of the BASIC instruction and

branches to address 0004H. This is done by a call instruction to save the actual program counter value on top of stack. The

isr is entered. If now a BASIC instruction uses the ERG or any other of these compiler registers their old contents is lost and

the results in the main routine are corrupted.

But how can we solve this? If this interrupt would be ignored (but not lost) until the BASIC instruction is finished, there

wouldn't be any problem because the registers ERG, ARG1 etc are not used for parameters from one BASIC instruction to the

next. This behavior is reached by adding GEID to the keyword INTERRUPT. Now the compiler disables all interrupts (GIE) if a

complex BASIC instruction must be executed. This prevents the interruption of the BASIC instruction. The disadvantage is the

unpredictable time between the occurence of the interrupt and the entrence of the isr. If interrupts occur with a fixed period,

the isr is not called with the same periode. An output signal derived from these interrupts gets a jitter.

Is there a way to avoid this disadvantage? Yes, there is. If using PIC with more data memory we can define a 16 byte area as

stack e.g. DEFINE STACK = addr . addr is the start address of a memory location of free 16 bytes in page 0. In case of

interrupts all important registers are stored in this location. At the end of isr the old values are restored. The main program

keeps its values and calculates the final result correctly. GIED is not necessary if using STACK.

Program structure

 Labels

43

Labels must begin with a letter and have a length of 2 characters minimum and 8 characters maximum. Any combination of

letters, numbers and underscores is allowed. Do not use reserved words as labels like command- and varialbe-names. No

problem are reserved words as a part of a label. Only the first 16 characters are significant!

Right:

 START

 loop

 loop_1

Wrong:

 99 (1. character is no letter)

 _loop (")

 HIGH (reserved word)

 Address labels are targets of a GOTO or GOSUB instruction and must be followed by a colon.

Example:

START:

FOR a1 = 0 TO 100

. . .

NEXT a1

GOTO start

 Symbols for variables or constants must be declared by the DEFINE instruction.

Example:

DEFINE start=1

DEFINE stop=100

DEFINE counter=a

TEST:

FOR counter=start to stop

. . .

NEXT counter

Labels and symbols cannot be redefined.

Example:

DEFINE start=1

. . .

. . .

DEFINE start=100 error message occurs!!!!

Program structure

 Constants

44

Constants must start with a letter and have a length of 2 charaters minimum and 16 characters maximum. Within the

constants any combination of letters, numbers and underscores are allowed. Do not use reserved words as constants.

Reserved words as a part of a constant are allowed. C onstants have 16 significant characters, maximum!

You can enter constant values in four different ways:

decimal , hex, binary, ASCII

Hex numbers must have a leading dollar sign, binary numbers a leading percentage sign. Ascii characters or strings are

enclosed by quotes. Decimal numbers are not marked.

 Symbols as constants must be created with the help of DEFINE-Direktive.

e.g.

DEFINE start = 50 AS CONST REM decimal

DEFINE start = $FF AS CONST REM hex (decimal 255)

DEFINE start = %00001111 AS CONST REM binary (Decimal 15)

DEFINE start = "A" AS CONST REM ASCII ("A" = decimal 65)

The range of values are 0 ... 255, 0 ... 65535 or 0 ... 4294967296. To give a constant a negative value will be interpreted by

the compiler as an error.

right:

DEFINE start = 1 AS CONST

wrong:

DEFINE start = -1 AS CONST

Within a definition you can not use arithmetic or logical equations to calculate the constant's value.

 But Attention !

Using a FOR-NEXT-loop the following expressions are allowed:

 FOR a = start TO start+99

Program structure

 Variables

45

Since compiler-version 5.5 the professional version iL_BAS15PRO has 32-bit-arithmetic implemented.Therefore we had to

introduce the variable type DBLWORD. These variables need 4 memory locations. In Addition the compiler needs RAM

memory for calculations. Because this RAM memory is exclusively needed when using 32-bit operations, a special method

was implemented to allow the use of this RAM memory in another way during the rest of the time. But big risks are affected

by this. The 32-bit-operation overwrites the dates without warning. In case you need those dates later on, they don't have to

be placed in this area.The additional RAM memory is called ARITH32 and will be settled with DEFINE. It contains 16

memory locations and is only generating code when you really carry out 32 bit arithmetic operations.

If you change from a former version to a new one:

 iL_BAS16 version 5 introduces a new kind of variable declaration. This became necessary because the new generation of

PICs (16F87x) has large data memory spreading over 4 banks. This large amount of data registers cannot be handled by the

old way. It would result in confusion. If you worked with version 4 or lower you can compile old programs with version 5 by

using compiler switch $OLDVAR. The only restrictions are: no other PICs except those defined in version 4 and no access to

bank 2 and bank 3. The new declaration needs file DEFAULT.EQU.

The new variable declaration gives you more flexibility and an easier access to those file registers which represents

hardware functions (e.g. rtcc, tris). New variables exist out of at least 2 characters. The first must be a letter (A to Z). Letters,

numbers and underscore are allowed within the variable. Don't use '$', '%' and '#'. All reserved words should not be used as

variables but allowed as a part of it. Only the first sixteen characters are significant.

All predefined symbols used by iL_BAS16 (compiler) or iL_ASS16 (assembler) are listed in DEFAULT.EQU. You also may

use this predefined symbols in BASIC statements and assembler statements. Your own and new variables have to be

defined by the DEFINE assignment at the top of the program or within a separate file which is imported by the compiler

(include files). The register address which is accessed by the defined symbol is not longer assigned by the old predefined

variables A, B, C, .. , AA, AB, .., but with the real absolute address.

e.g.

 DEFINE limit=10 AS CONST 'symbol limit gets the value of 10

 DEFINE counter=$40

 or DEFINE counter=$40 AS BYTE ' counter is 8 bit wide

This is the way to define byte variables. AS BYTE is not needed, but useful for better reading. A 16 bit variable (word) is

defined as follows:

 DEFINE result=$50 AS WORD

or DEFINE result=80 AS WORD

32-bit variables (only professional version) will be initiate with:

 DEFINE variable = $50 AS DBLWORD

The 32-bit variables in professional version 5.5 will be defined according the above proceeding:

DEFINE ZW_ERG = $60 AS DBLWORD

DEFINE ZW_ERG = 96 AS DBLWORD

Additionally you need the following instruction:

DEFINE ARITH32 = address

Program structure

 Variables (cont.)

46

This fixes the memory area, where the 32-bit operation calcuates its intermediate and its final result. The area contains 16

byte und can possibly be used in other ways. ATTENTION !!!

A 32-bit-variable occupies 4 memory locations.

The specification of AS BYTE is optional and can be left off. But it is to be recommended to do this little extra work because of

clearness.

 The BASIC compiler iL_BAS16 only supports unsigned byte, word and doubleword values. All values stored in variables

must fit into 8 bits for single variables and into 16 bits for double variables. 8 bit variables will fit in a range from zero to 255.

16 bit variables ranges from zero to 65535 and 32 bit ranges from zero to 4294967296

 "Table of usable variable addresses" tables show the memory map of each pic. Usable register addresses are marked with >

and < . Some PICs have very less memory. Be careful when using registers twice.

 IMPORTANT !!!

Take care not to define a word variable to the last memory address of a bank because only the low byte will keep in this

register while the higher byte is set on register 00 (indirect) of the same! page.

ARRAY variables:

Only simple variable assignments are possible, a calculation is not allowed with an array variable as an argument . The

additional data RAM of the PIC12C509 and PIC16C57 is only used for single dimensional arrays. You have no access to this

data memory by using simple variables.

Example:

PIC16C57:

DEFINE field_1 = $30

DEFINE field_2 = $50

DEFINE filed_3 = $70

DEFINE pointer = $1F

....

LET field_1(5)=55 'access address $35

LET field_1(16)=10 'access field_2 first item.

PIC12C509: only addresses 30H to 3FH.

Arrays in other PICs than those above are used like:

DEFINE field = $60 AS BYTE 'Arrays are only byte variables

DEFINE pointer=$51 AS BYTE 'index variable must be 8 bit

....

LET field(1)=55 'access to address $61

LET pointer=5

LET field(pointer)=10 'access to address $65

IMPORTANT !!!

Program structure

 Variables (cont.)

47

Take care that the last memory location of a page is not used by a word variable because the compiler cannot handle a wrap

around to the next page and the first memory location of a page is not usable.

Devices with plenty of data RAM helps you to get a good solution for the problem of re-entrance while an interrupt occures.

You can save all registers by using the runtime library because there are no PUSH and POP commands for the PIC. For

saving these registers you need 16 bytes in the first RAM page (address < 80H). For more details see chapter

"INTERRUPTS".

 INTERNAL COMPILER VARIABLES

Internally the compiler uses the following 16-bit-variable on which you have of course access. For example you have

accesse to the rest of a division (ARG1):

 ARG0 o. ERG low-order 16-Bit result

 ARG1 higher-order 16-Bit result

 ARG2 16-Bit argument

 ARG3 16-Bit argument

 ARG4 16-Bit argument

 ARG5 8-Bit argument

 ERR 8-Bit error term

The predefined variables ERG, ARG1, ARG2, ARG3, ARG4 and ARG5 are used by the compiler as a loop counter and for

calculations. It depends on the respevtive module where all internal variables will be layed down inside the memory of the

PIC. It is defined under Scale of variable addresses in column "compiler internal".

The ERR-variable

An ERR-variable informs you about internal operations.It is bit-sensed and has the following functions:

 bit 7 overflow at arithmetic routines (will be deleted before each operation)

 bit 6 will be used by the compiler as a flag of the return adress out of the RUN

 bit 5 TIME-library at the 16C54 and 16C55, because it just has a

 bit 4 two-stage stack, which here is not sufficient

 bit 3 timeout in SERIN or I2C occur

 bit 2 counts the nesting of the GOSUB-routine, because this check-up

 bit 1 can't be done at the moment of compilation

 bit 0 000 = no UP, 001 = 1 UP, 101 = 5 UP = are not allowed.

32-bit-arithmetic

 Using 32-bit-arithmetic (only PRO-version) you need additional "internal" compiler-variables, which will be settled by

DEFINE ARITH32.

 PORT- and TRIS-register

When using the 12C5xx und 16C5x the TRIS-informations must be hold ready in the working memory because here in

contrary to the 16C6x, 16C7x and 16B8x the TRIS-register can't be read out.

RATRIS

RBTRIS

RCTRIS

Program structure

 Variables (cont.)

48

This shows why the modules 12C5xx and 16C5x only have eight 8-bit respectively four 16-bit-variable.

The variables RA, RB, RC, RD, RE indicate the corresponding ports. At a lot of commands the corresponding pin has to be

specified beside the port. This will be done either by a comma or a point. The specification by a komma has the advantage,

that you also can use a variable.

for example

LET a1 = 7

HIGH RA,a1 REM set the most significant bit a1 to 1 (Bit 7 = 1)

LOW RB.3

Making a value assignment to a variable you have to pay attention to the permitted value range. The compiler doesn't make

any check-up. It shortens the result corresponding to the type of variable.

For example

LET a1 = 266 REM assignment to a 8-bit variable

PRINT "Variable a1 = " ,a1 REM output on display

 The value of a variable a1 -> 10 (a1 = 266 - 256 = 10)

 The variable definition of the DEFAULT.EQU file you will find at appendix Anhang I

Modules with more memory capacity offer an elegant solution to the reentrance-problem when an interrupt appears.

Whereas with "small modules" only the W-and status-register can be saved, here all variables which were used by the

runtime-library can be buffered (compensation for PUSH and POP). A 16-bit storage area will be settled with the help of the

DEFINE-instruction at the first RAM page (adress <80H).

On the following page you will find the memory areas which can be used for user-available-variables. Some PICs only have a

few variables. In those cases you can use further memory capacity if you don't use the commands DATA,READDATA and

RESTORE because these commands need a 16-bit-pointer. To find out the real address of these pointers please look at

DEFAULT.EQU.

Compatibility of the variable-size

Assingments are allowed when variable_c and variable_a are different types:

LET variable_C = variable_A

To avoid mistakes the type of variable A must have at least the same size as variable C, or it must be made certain that the

numeric value of variable_A is small enough to fit into variable_C. Otherwise the higher bits will be deflacated and

simultaniously signalized in the error-variable (in case this option wasn't deselected by compilerswitch $CCOFF).

The same applies to all functions concerning their results like

LET variable_C = summand_a + summand_b.

At multiplication note that normally the result requires the next higher variable-size against the size of the factors.

Program structure

 Variables (cont.)

49

Different variable-types can be written facultatively mixed into an argument (input value) of a function. You must be aware of

that then automatically the longer computing time variant of the function will be carried out which corresponds to the bigger

type of the two input-variables.

The variables will be placed in the mermory after the following scheme:

DEFINE var8 = $40 as byte => the contents of variable var8 is in 40H.

DEFINE var16=?40 as word => the Low-Byte is in 40H and the High-Byte of the 16-bit variable in 41H.

DEFINE var32=$40 as dblword => the LOW-Byte is in 40H, the following one in 41H, the next but one in 42H and

 the highest byte of the doubleword variable in 43H.

Program structure

 To program computing-time-optimized

50

1.)

PICs with several RAM-banks apply to: variables which are used often will be managed fastest if they lie in bank 0. Bank 1

and 2 are normally quicker than bank 3.

2.)

Program sections, e.g. often used routines, will be managed fastest when they are in page 0 (at that place you also find the

compiler-internal funktionroutines). Therefore the subroutins should be be there too.

3.)

Work if anyhow possible exclusively with Byte-variables. A very compact code will be produced for the logical and arithmetic

commands. 16-bit-operations can be avoid by using handy computing steps.

4.)

To manipulate single bits use also SET, RES and TOGGLE. The PIC knows such compact bit-commands and then the

compiler generates them too.

5.)

Please examine when using IF-clauses at 0 (= 0) respectively not equal 0. When using byte-variables a more compact code

will be generated compared to if-clauses <, >, <= or >=. 16-bit and 32-bit comparisions also need the subtract-routine in the

runtime-library which needs a lot of time.

6.)

If you don't need a range check at the byte-addition respectively -subtraction switch on the corresponding code generation by

using $CCOFF.

7.)

Avoid text in LCDWRITE. Instead remove the text into DATA-fields and read out character after character. It is possible to

write continuously in the LCD by setting the cursor position to 0,0.

Program structure

 Variable internal

51

Internal variables used by the compiler iL_BAS16

iL_BAS16 needs several registers for internal use e.g. parameters for library routines or loop counters. These variables are

also predefined and are named as follows:

ARG0 or ERG low byte of 16 bit result

ARG1 high byte of 16 bit result

ARG2 16 bit auxillary register

ARG3 16 bit auxillary register

ARG4 16 bit auxillary register

ARG5 8 bit auxillary register

ERR 8-bit error variable

Contrary to other PIC types the PIC12C5xx and PIC16C5x have no readable TRIS register. So this information must be kept

in a shadow register. This is necessary because of the bit manipulation of the TRIS register.

Shadow register

RATRIS

RBTRIS

RCTRIS

Now you can imagine how rare data memory in PIC12C5xx and PIC16C5x is. But anyway you have eight 8 bit- respectively

four 16 bit- variables and you can write BASIC programs for such tiny devices. No doubt!

The ERR variable

In this internal variable the compiler stores flags and values of results of its calculation.

Bit 7 overflow in arithmetic functions (will be cleared before operation begins)

Bit 6 used by the compiler to find the return address in runtime library (only

Bit 5 PIC12C5x and PIC16C5x, because they only have a two level hardware

Bit 4 stack, which is not sufficient).

Bit 3 timeout occurs in SERIN or I2C

Bit 2 counts how deep the GOSUB routines are nested because

Bit 1 this cannot be found out during compilation.

Bit 0 000 = no GOSUB, 001 = 1 GOSUB, 101 = 5 GOSUB = that is too much.

Ports are named as RA, RB, RC, RD, RE. If you want to access to one bit in a variable or port you simply add the bit number

or pin number to the variable separated by a point or comma. Using a point, the specification must be a number in the range

of 0 to 7. If the separation is a comma you can write a number or a variable.

e.g.

LET a1 = 7

HIGH RC,a1 REM the upper bit of port RC is set (bit 7 = 1)

LOW RB.3

If you try to assign a value to a variable that is beyond the limits (255 or 65535) the compiler terminates compilation with an

error message.

Program structure

 Variable internal (cont.)

52

e.g.

LET a1 = 266 REM error will occur

 (see DEFAULT.EQU in appendix)

Program structure

 Table of usable variable addresses

53

This file showshow the compiler uses the internal data memory of each PIC. The addresses listed in coloumn "USER" are

usable for your program.

Normally you have the same memory map for the A- or B-type. In case of doubts please compare the Microchip-data sheets

for both types.

PIC ROM PIC Compiler USER USER amount remark

 internal internal (hex) (decimal)

 12C508 512 000-006 008-016 > 017-01F 23-31<= 8

 12E508 512 000-006 008-016 > 017-01F 23-31<= 8

 12C509 1024 000-006 008-016 > 017-01F 23-31<= 8 030-03F for arrays

 12E509 1024 000-006 008-016 > 017-01F 23-31<= 8 030-03F for arrays

 12F629 1024 000-01F 04E-05F > 020-04D 32-77<= 45

 080-09F

 12C671 1024 000-01F 020-022 > 023-06F 35-111<= 76

 080-09F 070-07F > 0A2-0BF 162-191<= 29

 0A0-0A1

 12C672 2048 000-01F 020-022 > 023-06F 35-111<= 76

 080-09F 070-07F > 0A2-0BF 162-191<= 29

 0A0-0A1

 12E673 1024 000-01F 020-022 > 023-06F 35-111<= 76

 080-09F 070-07F > 0A2-0BF 162-191<= 29

 0A0-0A1

 12E674 2048 000-01F 020-022 > 023-06F 35-111<= 76

 080-09F 070-07F > 0A2-0BF 162-191<= 29

 0A0-0A1

 12F675 1024 000-01F 04E-05F > 020-04D 32- 77<= 45

 080-09D

 16C505 1024 000-007 008-017 > 018-01F 24-31<= 8 030-03F for arrays

 050-05F for arrays

 070-07F for arrays

 16C53 384 000-007 008-017 > 018-01F 24-31<= 8

 16C54 512 000-007 008-017 > 018-01F 24-31<= 8

 16C55 512 000-007 008-017 > 018-01F 24-31<= 8

 16C56 1024 000-007 008-017 > 018-01F 24-31<= 8

 16C57 2048 000-007 008-017 > 018-01F 24-31<= 8 030-03F for arrays

Program structure

 Table of usable variable addresses (cont.)

54

050-05F for arrays

 070-07F for arrays

 16C58 2048 000-007 008-017 > 018-01F 24-31<= 8 030-03F for arrays

 050-05F for arrays

 070-07F for arrays

 16C554 512 000-01F 020-031 > 032-06F 50-111<= 61

 080-09F

 16C556 1024 000-01F 020-031 > 032-06F 50-111 <= 61

 080-09F

 16C558 2048 000-01F 020-031 > 032-07F 50-127<= 77

 080-09F 0A0-0A0 > 0A1-0BF 161-191 <= 31

 16C61 1024 000-00B 00C-01E > 01F-02F 31-47 <= 17

 16C62 2048 000-01F 020-032 > 033-07F 51-127<= 76

 080-09F 0A0-0A0 > 0A1-0BF 161-191<= 31

 16C620 512 000-01F 020-032 > 033-06F 51-111<= 60

 080-09F

 16C621 1024 000-01F 020-032 > 033-06F 51-111<= 60

 080-09F

 16C622 2048 000-01F 020-032 > 033-07F 51-127<= 76

 080-09F 0A0-0A0 > 0A1-0BF 161-191<= 31

 16E623 512 000-01F 020-022 > 023-06F 35-111<= 76

 080-09F 070-07F

 16E624 1024 000-01F 020-022 > 023-06F 35-111<= 76

 080-09F 070-07F

 16E625 2048 000-01F 020-022 > 023-06F 35-111<= 76

 080-09F 070-07F > 0A0-0BF 161-191<= 32

 16F627 1024 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F 0ED-0FF > 0A0-0EC 160-236<= 76

 100-11F 170-17F > 120-14F 288-335<= 47

 180-1FF

 16F628 2048 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F 0ED-0FF > 0A0-0EC 160-236<= 76

 100-11F 170-17F > 120-14F 288-335<= 47

 180-1FF

 16C63 4096 000-01F 020-032 > 033-07F 51-127<= 76

 080-09F 0A0-0A0 > 0A1-0FF 161-255<= 94

Program structure

 Table of usable variable addresses (cont.)

55

16C642048 000-01F 020-032 >033-07F 51-127<= 76

 080-09F 0A0-0A0 > 0A1-0BF 161-191<= 31

 16C65 4096 000-01F 020-032 > 033-07F 51-127<= 76

 080-09F 0A0-0A0 > 0A1-0FF 161-255<= 94

 16C66 8192 000-01F 020-032 > 033-07F 51-127<= 76

 080-09F 0A0-0A0 > 0A1-0FF 161-255<= 94

 100-11F 120-120

 180-19F 1A0-1A0

 16C67 8192 000-01F 020-032 > 033-07F 51-127<= 76

 080-09F 0A0-0A0 > 0A1-0FF 161-255<= 94

 100-11F 120-120

 180-19F 1A0-1A0

 16C71 1024 000-00B 00C-01E > 01F-02F 31-47 <= 17

 080-09F

 16C72 2048 000-01F 020-031 > 032-07F 50-127<= 77

 080-09F 0A0-0A0 > 0A1-0BF 161-191<= 31

 16C73 4096 000-01F 020-031 > 032-07F 50-127<= 77

 080-09F 0A0-0A0 > 0A1-0FF 161-255<= 94

 16C74 4096 000-01F 020-031 > 032-07F 50-127<= 77

 080-09F 0A0-0A0 > 0A1-0FF 161-255<= 94

 16C710 512 000-00B 00C-01E > 01F-02F 31-47 <= 17

 080-08B

 16C711 1024 000-00B 00C-01E > 01F-04F 31-79 <= 49

 080-08B

 16C715 2048 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F

 16C83 512 000-00B 00C-01E > 01F-02F 31-47 <= 17

 080-08B

 16C84 1024 000-00B 00C-01E > 01F-02F 31-47 <= 17

 080-08B

 16F83 512 000-00B 00C-01E > 01F-02F 31-47 <= 17

 080-08B

 16F84 1024 000-00B 00C-01E > 01F-04F 31-79 <= 49

 080-09B

 16F818 1024 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F > 0A0-OBF 160-191<= 32

Program structure

 Table of usable variable addresses (cont.)

56

100-10F

 180-18F

 16F819 1024 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F 0ED-0FF > 0A0-0EC 160-236<= 76

 100-10F 16D-17F > 120-16C 288-364<= 76

 180-18F 1ED-1FF

 16F870 2048 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F

 100-11F

 180-19F

 16F871 4096 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F

 100-11F

 180-19F

 16F872 4096 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F

 100-11F

 180-19F

 16F873 4096 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F 0ED-0FF > 0A0-0EC 160-236<= 76

 100-11F

 180-19F

 16F874 4096 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F 0ED-0FF > 0A0-0EC 160-236<= 76

 100-11F

 180-19F

 16F876 8192 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F 0ED-0FF > 0A0-0EC 160-236<= 76

 100-11F 16D-17F > 120-16C 288-364<= 76

 180-19F 1ED-1FF > 1A0-1EC 416-492<= 76

 16F877 8192 000-01F 06D-07F > 020-06C 32-108<= 76

 080-09F 0ED-0FF > 0A0-0EC 160-236<= 76

 100-11F 16D-17F > 120-16C 288-364<= 76

 180-19F 1ED-1FF > 1A0-1EC 416-492<= 76

IMPORTANT !!!

Take care that the last memory location of a page is not used by a WORD-variable, or the last three location by a

Doubleword, because the compiler cannot handle a wrap around to the next page and the first memory locations of a page is

not usable.

Program structure

 Table of usable variable addresses (cont.)

57

ARRAYs

When using the modules PIC16C6x, PIC16C7x, PIC16C8x and PIC16F8x you can define the data memory as an array or a

number of arrays. You simply have to append an index. This index will be used as an offset to calculate the absolute

memory address. The offset will be added to the address of the reference-variable. Restrictions by using these arrays

correspond to those arrays of the

PIC16C57.

e.g.

DEFINE field = $50 AS BYTE

...

...

 LET field(2) = 10 'the value 10 is writen in memory address $52 (=$50+2)

Modules with more memory capacity offer an elegant solution for the reentrance-problem when an interrupt appears. At

smaller modules only the W- and status-register can be saved. Using bigger ones all variables which are used in the runtime-

library will be buffered (replace for PUSH and POP). Therefore a 16-Byte memory area at the 1 RAM page will be fixed with

the help of the DEFINE-instruction.

Program structure

 IF constructions

58

The IF-THEN-ELSE-instruction compares variables and/or constants.

IF var_a = 1 THEN LET var_b = var_a * 2 ELSE GOTO more

 IF clauses cannot be nested !!! It is forbidden to:

 WRONG! IF var_a = 1 THEN IF...

You can't use logical combinations in If-causes. It's forbidden to:

 Wrong!IF a1 and 1 = THEN

Because in the example above only one bit is checked you should use the following more efficient formulation,

IF a1,0 = 1 THEN

otherwise you have to write a separate line for the logical combinations;

 see also IF-THEN-ELSE

Program structure

Mathematical operators

59

The compiler supports following functions:

Addition + a + b

 Subtraction - a - b

Multiplication * a * b

Division / a / b

Modulo mod a mod b (modulo, rest of division)

 Shift- and rotation instructions:

 shl var shl 11110011 => 11100110 contents of var shift to the left (fill up with 0)

 shr var shr 11110011 => 01111001 contents of var shift to the right (fill up with 0)

 rotl var rotl 11110011 => 11100111 contents of var rotates to the left (bit 7 becomes bit 0)

 rotr var rotr 11110011 => 11111001 contents of var rotates to the right (bit 0 becomes bit 7)

(Numbers above are in binary format).

Compare:

equal = a = 5

not equal <> a <> b

less than < a < b

greater than > a > b

less or equal <= a <= b

greater or equal >= a >= b

For 8 and 16 bit operations:

The results of multiplication, division and modulo always have 16 bits. It is truncated and adapted to the type of

variable that finaly stores the result. For the function of addition and subtraction an optimized code is

generated.

e.g.

 var_a = 200 REM 8 bit variable

 var_b = 200 REM 8 bit variable

 var_c = 0 REM 8 bit variable

 var_u = 0 REM 16 bit variable

var_c = var_a * var_b REM result is 8 bit, too (64), upper byte lost

var_u = var_a * var_b REM result is 16 bit (value_u = 40000)

The compiler expands all internal intermediate results to 16 bits (at 8bit-multiplication and -division).

e.g.

var_a = 200 REM 8 bit variable

var_b = 200 REM 8 bit variable

var_u = 0 REM 16 bit variable

var_s = 0 REM 16 bit variable

var_u = var_a * var_b / var_b REM result is ok (var_u = 200)

var_s = var_a * var_b * var_a / var_b / var_b REM result is wrong (var_u = 0), because var_a

 intermediate result exceeds the range of 16 bits.

Program structure

Mathematical operators (cont.)

60

32-bit-operations will be done independently from 8-bit- and 16-bit-arithmetic. Independant routines in the

runtime-library are competent for this.

If you write mathematical expressions for this BASIC compiler, please take care of the following circumstances:

The compiler calculates the equation form left to right without any respect of brackets or order of priority.

e.g.

var_a = 3 + 4 * 5

The result is 3 + 4 * 5 = 35 instead of 3 + (4 * 5) = 23 which would be right, usually

The compiler always calculates with 16 bit resolution. The carryover could be lost, according the range of the variable where

the result should be stored in.

Program structure

Logical operators

61

The compiler iL_BAS16 supports following logical operands:

 logical AND and a and b

 logical OR or a or b

 logical EXOR xor a xor b

e.g.

 LET var_a = 5 and 3 REM 101 and 11 = 001 = 1

 LET var_a = 5 or %1001 REM 101 or 1001 = 1101 = 13

LET var_a = 5 xor $A REM 101 xor 1111 = 1010 = 10

LET var_aXOR var_b

Truth table:

 AND OR XOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Remember that there is another priority order in mathematical and logical expressions.

Program structure

 32-bit arithmetic introduction

62

(only professional version)

The 32-bit arithmetic offers the possibility to work with numbers from 0 to 429496296. These are numbers without sign and

use 4 bytes in the memory. To define them use the keyword DBLWORD. Because the 32-bit-arithmetic needs a lot of

memory we've chosen a way to treat memory resouces with care. The 8-bit- and 16-bit-arithmetic use a memory area which

is at diposal only for the compiler. Those variables are predefined as ERG, ARG1, ARG2, ARG3, ARG4, and ARG5 and are

not allowed to be shifted to another memory location. The 32-bit-arithmetic additionally needs memory capacity for

arithmetic-routines in the runtime-library. This memory must be in BANK0. The start address of the memory area will be fixed

with a DEFINE ARITH32 instruction. The area contains 16 bytes which must be available in a coherent set. So you must be

very careful when you are near the bank boundary. Only the 32-bit-arithmetic routines will access to this memory area. So

you have the possibility to use this area in another way. But this double-using is quite dangerous what means that only

professionals should use it.

The following example shows a mixture of byte-, word- and Dblword-variables:

define device 16f877

define a1=$20 as word

define a2=$22 as dblword

 define a3=?120 variables in BANK 2

 define a4=$1A0 variables in BAKN 3

define xx=$30

 define arith32=$40 'defines the rule of computing

start:

 let a2=1234567

 let a2=a2 * 3

 let a2=a2 and $00ffff00

 set a1,7 'SET only with BYTE-variables

 set a2,7

 let xx=a2 '32-bit to 8-bit, just LSB

 set a3,7

 let xx=a1 '16-bit to 8-bit, just LSB

 set a4,7

 let xx=a4 'variables of bank 4 to bank 1

 high rb,1

 wait 2000

 low rb,1

 wait 2000

 goto start

Program structure

 Comparators

63

The PIC 16C62x has comparator inputs at port RA. These inputs can be configured in several ways. The procedure is quite

equal to the ADCFG for analogue converters. In this case the keywords are CMCFGx and VRCFGx.

With these keywords you can set comparators respectively voltage references. The following connections result:

 CMCFG0 comparator reset

 CMCFG1 3 inputs mux C1OUT = RA2-RA0 (or RA2-RA3) C2OUT = RA2-RA1

 CMCFG2 4 inputs mux C1OUT = Vref-RA0 (Vref-RA3) C2OUT = Vref-RA1 (Vref-RA2)

 CMCFG3 2 common Vref C1OUT = RA2-RA0 C2OUT = RA2-RA1 RA3 = digital io

 CMCFG4 2 comparators C1OUT = RA3-RA0 C2OUT = RA2-RA1

 CMCFG5 1 comparator C1OUT = RA2-RA1 RA0 and RA3 are digital io's

 CMCFG6 2 common Vref C1OUT (RA3) = RA2-RA0 C2OUT (RA4)=RA2-RA1

 CMCFG7 off RA0 to RA3 are digital io's

In CMCFG1 and CMCFG2 mode the CIS bit in CMCOM register defines if RA0 or RA3 (RA1 or RA2) is connected to the

comparator. This bit must be set and reset by software using SET and RES commands.

VRCFG defines in which way the reference voltage is used. Because each bit has a different meaning, you have to calculate

the value for x.

value add to x

bit 7 value = 0 -> Vref off

 value = 128 -> Vref on

bit 6 value = 0 -> Vref no connection to RA2

 value = 64 -> Vref is conneted with RA2

bit 5 value = 0 -> Vref large range

 value = 32 -> Vref smal range

bit 4 -> not used

bit 3 -> defines the voltage range with formular:

 if bit 5 = 1 then: Vref = (x/24)*Vdd; with x = 0 to 15 (bit 3 to bit 0)

 if bit 5 = 0 then: Vref = 0.25*Vdd + (x/32) * Vdd; with x = 0 to 15

 Hint:

(please read the chapter in MICROCHIPs Databook)

Program structure

Program memory pages (iL_PAGE0)

64

The compiler module iL_PAGE0 helps to handle the program memory paging. It is a part of iL_BAS16SEP and

iL_BAS16PRO. Other compiler versions do not use this module. If the program memory of the desired PIC is larger than one

page, iL_PAGE0 searches and calculates the branches over a page boundery. To reach such a target address it is

necessary to modify the PCLATH register or the page preselect bits in the status register before the goto or call instruction.

This boring and error intensive job is done by iL_PAGE0 automatically.

iL_PAGE0 works like an assembler. Its iterative algorithem looks for these far branches and replace them by special

instructions. The assembler translates them into a series of instructions.

 But the possibilities of iL_PAGE0 are limited. Of course you can instruct iL_PAGE by using $LRANGE 2048 to convert all

CALLs and GOTOs which occur in a program in their longcall- and longjump- equivalent. But this would be an enormous

waste of memory-resources. To 'accomodate' the module iL_PAGE0 with a little program-disciplin will be shown at

$LRANGE.

BASIC instruction set

 ADDELAY

65

(only for PICs with built-in analog digital converter)

 syntax: ADDELAY const

 function: Inserts an additional delay when selecting an new channel or turning on the adc before starting the

conversation.

 const (1...255) delay t=(16/fq)*const

 description: The value of the hold capacitor is increased from 51pF (16C7x) to 120pF at PIC16F87x. So if you select

another channel more time is needed to charge or discharge this capacitor to the new voltage level. If you don't care you may

get wrong values when reading the analogue input. Reading twice the same channel the second result is ok. This effect can

be eliminated by inserting an additional delay.

BASIC instruction set

 ADINP

66

(only for PICs with built-in analog digital converter)

 syntax: ADINP chanal, var

 function: converts an analogue voltage into its digital equivalent. The maximum value depends on Vref.

 chanal (0 ... 7) selects the I/O input chanal, may be variable or constant

 var (8 bit or 16 bit) where the result of the conversation will be stored

description:

 The ADINP allows you to measure a voltage between 0V and Vref. So 0V at the input results in a value of 0 while a voltage

of Vref results in a value of 255 (0FFH). The converted value will be stored in a 8 bit variable. To increase the PIC's

flexibility, some inputs for ad conversation may also be used as standard i/o. The available configuration is listed in the table

below and must be defined in the DEVICE line. If the ADINP command is executed, the program first selects the desired

chanal. If the ad converter is turned off, it will be switched on and then the conversation is started. If the RC oscillator is used

as timebase, the conversation time is independent of the xtal frequency. Its duration ranges between 20us up to 60us

(typical 40us). This time depends on the power supply voltage, temperature and tolerances during the factory process. At the

end of conversation (the controller waits until ready) the result is stored into the 8 or 16 bit variable var. The number of

analogue inputs depends on the numbers of pins the PIC has.

example:

 define device 16C71,wdt_off,adcfg0

 xtal 4.19

 adinp 0,a

remarks:

Only for 12C67x, 16C7x and 16F87x. Don't forget ADCFGx in the DEVICE line. The analogue inputs are read into a

multiplexer which selects the desired input and leads the signal to the ad converter:

 16C71, 16C710, 16C711: ADCFGx defines the usage of port RA.

 RA0 RA1 RA2 RA3 Ref.

ADCFG0 analogue analogue analogue analogue Vref=Vdd

ADCFG1 analogue analogue analogue ref.inp RA3

ADCFG2 analogue analogue digital digital Vref=Vdd

 ADCFG3 digital digital digital digital nc

 16C72.to 16C77: ADCFGx defines the usage of port A and port E

 RA0 RA1 RA2 RA3 RA5 RE0 RE1 RE2 Ref.

ADCFG0 A A A A A A A A Vdd

ADCFG1 A A A Vref A A A A RA3

ADCFG2 A A A A A D Dl D Vdd

ADCFG3 A A A Vref A D D D RA3

ADCFG4 A A D A D D D D Vdd

ADCFG5 A A D Vref D D D D RA3

ADCFG6 D D D D D D D D nc

ADCFG7 D D D D D D D D nc

RE0,RE1,RE2 only exist with 40pin modules.

BASIC instruction set

 ADINP (cont.)

67

The PIC16F873, 16F874, 16F876 abd 16F877 have a 10 bit ad converter which can be read either as a 8 bit result into a 8 bit

variable or 10 bit result into a 16 bit variable. It is up to you to select the result format as left or right fit by defining ADCFGx,L

or ADCFGx,R. To put the result into a byte variable it makes sens to select "left". For 10 bit results in a word variable "right"

will be the right choice (see corresponding data sheet of Microchip).

16F87x

 RA0 RA1 RA2 RA3 RA5 RE0 RE1 RE2 Ref.

ADCFG0 A A A A A A A A Vdd

ADCFG1 A A A Vref+ A A A A RA3

ADCFG2 A A A A A D D D Vdd

ADCFG3 A A A Vref+ A D D D RA3

ADCFG4 A A D A D D D D Vdd

ADCFG5 A A D Vref+ D D D D RA3

ADCFG6 D D D D D D D D nc

ADCFG7 D D D D D D D D nc

ADCFG8 A A Vref- Vref+ A A A A RA3,RA2

ADCFG9 A A A A A A D D Vdd

ADCFG10 A A A Vref+ A A D D RA3

ADCFG11 A A Vref- Vref+ A A D D RA3, RA2

ADCFG12 A A Vref- Vref+ A D D D RA3, RA2

ADCFG13 A A Vref- Vref+ D D D D RA3, RA2

ADCFG14 A D D D D D D D Vdd

ADCFG15 A D Vref- Vref+ D D D D RA3, RA2

RE0, RE1, RE2 only at 40 pin devices

12F675

Here a bit mask decides between analog- and digital-input.

ATTENTION !!! The corresponding bit in the TRIS-register must be set at 1 (INPUT) so that the pin can work as an

analog-input.

AND AN1 AN2 AN3

RA0 RA1 RA2 RA4

ADCFG0 D D D D

ADCFG1 A D D D

ADCFG2 D A D D

ADCFG3 A A D D

ADCFG4 D D A D

ADCFG5 A D A D

ADCFG6 D A A D

ADCFG7 A A A D

ADCFG8 D D D A

ADCFG9 A D D A

ADCFG10 D A D A

ADCFG11 A A D A

ADCFG12 D D A A

ADCFG13 A D A A

 ADCFG14 D A A A

ADCFG15 A A A A

BASIC instruction set

 ADINP (cont.)

68

Here only AN1 can be defined as a reference-input by using compiler switch $VCFG. Because it is a 10-bit-converter you

have to pay attention to the representational form of the result (see 16F87x).

Important!

Usually the ad converter is kept turned on all the time. But if you wish to turn it off if not used you should add a '*' character to

ADCFGx. This effects that the ad converter is turned on and off automatically.

example:

ADCFG3*

 ADCFG3*,R ' only 16F87x

BASIC instruction set

 ASM

69

syntax: ASM

 function: between the statement ASM and ENDASM you can write machine language instructions

 description: the compiler copies all lines between ASM and ENDASM without any changes into the source file. There they

will be assembled by iL_ASS16. The syntax of these mnemonics is quite the same as the assembler (created by Microchip)

needs. The first column is reserved for labels.

example:

 ASM

START MOVLW 00h ;clears port B

 MOVWF RB

 ENDASM

 remarks: ASM and ENDASM are commands and so they need at least one leading space. If your assembler porgram

crosses pages, you must take care yourself to set the page "preselect bits" or the PCLATH register accordingly. But you can

olso use the special assembler commands LCALL, LJMP, LJC, LJNZ etc.

BASIC instruction set

 BITPOS

70

syntax: BITPOS var1, var2

 function: Converts a number from 0 to 7 into their bit position value.

 var1 result variable

 var2 source variable

 description: You often get the problem to mask single bits within a variable depending on a counter value. For example: in

the first pass bit 0 should be testet, in the second pass bit 1, in the third pass bit 2 etc. BITPOS converts as follows:

0 %00000001 4 %00010000

1 %00000010 5 %00100000

2 %00000100 6 %01000000

3 %00001000 7 %10000000

Example:

 LET var=5

 BITPOS var_B, var_A REM in var_B is written exclusively

'REM %00100000 = 32

 remarks: BITPOS is only usable with 8-bit-variables, it is also suited for 2^n with n=0...7. Only the three lowest bits are

taken into account. So value 9 in variable var_A (see example above) has the result %00000010.

BASIC instruction set

 CALVAL

71

(only for PICs with activate internal RC oscillator)

 syntax: CALVAL value

 value is a byte constant

 function: Defines a value for the OSCCAL register

 description: There are several PICs with an internal RC oscillator. Because these types of oscillators are not very exact in

frequency (depends on voltage of power supply and temperature) Microchip measures a calibartion value to trim the 4 MHz

frequency as close as possible. This value has to be written into the OSCCAL register. BUT this value will be erased in JW-

types because it is programmed at the highest program memory address which is available in this kind of PICs. If you use a

JW-PIC read it out first and note the value at the highest memory location. Programmer normally do not program this

memory address. But if you use JW-types it is comfortable to define this value (read out of the PIC before erasing) in the

BASIC program. This is much easier than changing this value during programming procedure. If no value is defined 80H will

be assumed as default.

 remarks: If you use such JW-types for the first time put it into the programmer, read the memory contents and note the

value of the last memory address on the device. Doing this you do not lose the right value, which is different to each device, to

trim the oscillator to 4 MHz.

CALVAL $C0

ensures that C0H will be written into the OSCCAL-register.

 * only if internal RC oscillator is selected.

BASIC instruction set

 CLOCK and CLOCK1

72

(not for 12C50x and 16C5x)

 syntax: CLOCK var

 var is a word variable

 function: With the PIC12C67x, PIC16C6x, PIC16C7x, PIC16X8x and PIC 16F87x an exact timebase can be

implemented by using the internal timer (TMR0) and its interrupt facilities. The internal variable TIMERX will be incremented

each 1/100s. If this variable reaches 100 the user defined variable var is incremented. If you are using a xtal frequency

below 100kHz the internal interrupt occurs each 1/128s and TIMERX counts up to 128. The variable var must be 16 bits.

 description: The command CLOCK var initializes the internal timebase and invokes the automatic counting, a memory-

cell var will be increased each second by 1. It doesn't matter how you use the variable. You may read or write the variable

var

Example:

 CLOCK time REM starts the timebase

START:

 IF time = 60 then GOTO minute REM 1 minute ist over

 GOTO start REM

This command was expanded to use other periodes than the described 10ms. So you get the opportunity making your clock

slower or faster. The range is 1.0 to 999.9ms. But take care about the precision because the prescaler value is fixed.

 example : CLOCK time,100 'clock runs 10 times faster

 CLOCK uses the timer TMR0 and the scaler.

 CLOCK1

If watchdog is enabled and CLOCK is also used then the prescaler is assigned to TMR0. That results in a watchdog periode of

about 18 ms which is quite short. It can happen a reset by watchdog because internal and user defined functions may

exceed 18 ms. If using the compiler switch $WDTUSR a watchdog reset is very possible. You might solve this problem by

inserting CLRWDT commands very carefully to clear watchdog within 18 ms.

But this is not easy. To keep the prescaler assigned to watchdog it's necessary to use another timer module. If TMR1 is

implemented into the desired device you can use CLOCK1 to activate this timer instead of TMR0. Because TMR1 has its

own prescaler the watchdog periode exceeds to 2.3 seconds.

 Some devices gives you the oppertunity to drive TMR1 with a second xtal, connect to T1OSI and T1OSO. These pins are

usually I/O pins. But this timer runs also during sleep mode. To define its frequency use keyword CLK1XTAL value (value in

MHz). If defined iL_BAS16 will select it automatically.

 example : CLOCK1 time,100 'clock1 runs 10 times faster

BASIC instruction set

 CURSOFF

73

syntax:CURSOFF

 function: turns off cursor.

 description: This command turns off the cursor on the lcd.

 example:

START:

 LCDINIT rb,2,40

 ...

 CURON REM cursor on, entry mode

LOOP:

 INKEY var_a

 IF var_a = 0 THEN GOTO LOOP

 LCDWRITE 0,0,var_a REM write input on lcd

 CURSOFF REM turn cursor off

BASIC instruction set

 CURSON

74

syntax:CURSON

 function: turns on cursor.

 description: This command turns on the cursor on the lcd.

 example:

START:

 LCDINIT rb,2,40

 ...

 CURON REM cursor on, entry mode

LOOP:

 INKEY var_a

 IF var_a = 0 THEN GOTO LOOP

 LCDWRITE 0,0,var_a REM write input on lcd

 CURSOFF REM turn cursor off

BASIC instruction set

BINTOASC

75

(also CONASC)

 syntax: BINTOASC var,buffer

 function: CONASC converts a byte or word variable into an ascii string. Converting a byte variable needs a 3 byte buffer for

the result, a word variable generates a string of 5 characters.

 description: This instruction is useful for sending the contents of a variable to a monitor for debugging.

 Number 123 will be converted. In the buffer you will find the following string 49,50,51,(31H,32H,33H).

 var is a 8 or 16 bit variable

 buffer is a 3 or 5 byte wide memory location for the result

example:

 DEFINE a1 = $30 as byte

 DEFINE buffer = $31 as byte

 ...

 LET a1 = 87

 BINTOASC a1,buffer 'buffer contains 48 56 55 ("087")

BASIC instruction set

 BINTOBCD

76

(also CONBCD)

 syntax: BINTOBCD var,buffer

 function: BINTOBCD changes a 8-, 16- or 32-bit-number into a BCD-packed number. You need a buffer of 5 byte, even only

one byte-variable chall be changed.

 Number 123 will be converted. In the buffer you will find the following string 00H 00H 00H 01H 23H.

BASIC instruction set

BINTODEC

77

(also CONDEC or CONDEZ)

 syntax: BINTODEC var,buffer

 var is a 8 or 16 bit variable

 buffer is a 3 or 5 byte wide memory location for the result

 function: CONDEZ converts a 8- or 16-bit number into a 3- or 5-digit decimal number. For converting you need a 3-

respectively 5-byte buffer.

 description: This instruction is useful for converting a binary number into a decimal number. The contents of the buffer

could then be displayed easily

example:

 DEFINE a1 = $30 as byte

 DEFINE buffer = $31 as byte

 ...

 LET a1 = 87

 CONASC a1,buffer 'buffer contains 0 8 7

The number 12345 will be stored in the 5-byte-buffer as 1,2,3,4,5.

BASIC instruction set

 DATA

78

(not for PIC12C5xx and PIC16C5x)

 syntax: DATA const1, const2, const3,....

 (const1, const2,... are byte constants)

 function: Defines an array of up to 2048 constants (depends on size of program memory)

 description: Very often a large amount of constant-values are necessary. In former compiler releases you had to use

LOOKUP and LOOKDWN statements. But they only can handle up to about 100 items. DATA breaks through this barrier and

puts the constant to the end of the program in contraty to LOOKUP and LOOKDWN. Read an item with READDATA

increments an internal pointer which controls the access. To reset or set this pointer to a specified line is the only pointer

modification you need. All items are stored in the program memory.

example:

START:

 RESTORE REM read pointer, points to the first item

 READDATA var_A REM read first item (here 65)

 RESTORE label_1 REM sets read-pointer

 READDATA var_A REM read 5. item here 12

 READDATA var_B,var_C,var_D REM read next three items

 GOTO START

 DATA 65,66,67,"F"

lab1l_1: DATA 12,45,32,17,25

 remarks: see also RESTORE, READDATA

BASIC instruction set

 DEC

79

syntax: DEC var

 var is a byte or word variable

 function: var becomes var - 1

 description: This command DEC var is the code optimized equivalent to LET var = var -1. This command is stored code-

optimized in contrary to LET var = var-1. In contrary to this command DEC doesn't check the validity range of the result.

Example:

START:

 LET var_a = 10 REM variable var_a is set to 10

 DEC var_a REM in var_a now you have 9

 remarks: see also INC

BASIC instruction set

 DELAY

80

syntax: DELAY var

 var is a 8- or 16- bit variable or constant

 function: delays program execution with software loops. The resolution is 100us.

 decription: The command DELAY holds up program execution for a specified time without entering the controller's sleep

mode. The power consumption will not be reduced.

example:

START:

 DELAY 5 REM holds up for 500us

 GOTO start REM

 remarks: Hold up times between 100us and 6,5s. Because this instruction is done by software delay routines, the

maximum hold up time depends on the xtal frequency. With high xtal frequency a 16 bit value is not sufficient (warning).

BASIC instruction set

 DOZE

81

syntax: DOZE duration

 function: The controller enters the sleep mode for a short time

 duration (0 ... 7) duration of sleep phase (2 duration x 18 ms), can be a variable or constant.

 description: The command DOZE enters the sleep mode for a specified time. In sleep mode the power consumption is

reduced down to 20 uA (if no output is driven). The variable or constant duration accept values of 0 to 7. Greater values will

be truncated.

Following times are avaiable:

 DOZE 0 18 ms

 DOZE 1 36 ms

 DOZE 2 72 ms

 DOZE 3 144 ms

 DOZE 4 288 ms

 DOZE 5 576 ms

 DOZE 6 1.152 ms

 DOZE 7 2.304 ms about 2,3s

 example: LET time = 7 REM initialization of the variable time (2,3 s)

START:

 DOZE time REM sleeps for 2.3 s

 GOTO start REM and sleep for 2,3 s and sleep for 2,3 s and sleep...

 DOZE uses the watchdog-timer (must be active) and the prescaler. In case CLOCK is active at the same time,

the prescaler will be switched over to the watchdog-timer.

BASIC instruction set

 DTMFOUT

82

syntax: DTMFOUT port,pin_hf, pin_lf,duration,pause, key1, key2, ..., keyn

 function: generates DTMF tones (e.g. telephone)

 porti/o port, variable or constant

 pin_hfi/o pin where the column frequency is outputted, variable or constant

 pin_lfi/o pin where the row frequency is outputted, variable or constant

 durationca. duration of the tone in msec (must be a constant)

 pause ca. duration of the pause between the tones in msec (only constant)

 key, keyn(0 ... 15) key(s), variable or contant

 description: The DTMFOUT command output DTMF tones at two port pins. The pins have to belong to the same port and

must be wired as shown below. The DTMF tone which is generated is a combination of row and column frequencies. The pins

are defined as output, and two different frequencies are generated as long as specified in duration . Then a pause follows

with the duration of pause

example:

START:

 DTMFOUT ra.0,1,200,50,10,7,8,3,1,4,5,2 REM generates a sequence

 REM of tones representing

 REM the phone number

 REM 07831 452 at

 REM port ra.0 and ra.1

 GOTO START

BASIC instruction set

 DTMFOUT (cont.)

83

 row and column frequency in Hz assembly of the output pins

 remarks: This command is optimized for a xtal frequency of 12 Mhz. If lower xtal frequencies are used only in some cases it

would work fine (e.g. at 4.19MHz, please check others).

 decimal value for key : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 equates to keyboard : 1 2 3 4 5 6 7 8 9 * 0 # A B C D

BASIC instruction set

 EEDATA

84

(only for PICs with internal eeprom data memory)

 syntax: EEDATA(addr) value1, value2, value3 [,...] (max. 8-byte-values)

 addr is the address where the first byte is stored into

 value1, value2 are byte constants

 funktion: The constants are programed into the internal eeprom data memory during device programing.

 description: Data are written into the internal eeprom data memory by either the WRITE instruction during program

execution or during device programing. This allows to put e.g. parameters or passwords into the eeprom data memory

without setting them by program operations. Some PIC programers can program the eeprom data memory after the program

memory, others need two steps: one to program the program memory another to program the eeprom data memory.

 example:

 remarks: Not every PIC type has an internal eeprom data memory !

BASIC instruction set

 END

85

syntax: END

 function: stops program execution and enters sleep mode to reduce power consumption.

 description: Program exectution is terminated to keep the latest output information at the port pins and the sleep mode is

entered. This condition can be released only by reset or interrupts if enabled.

 example:

 LET var_a=0 REM initialization of variable var_a

START:

 . . .

 GOTO START

CONTINUE:

 END REM stops execution and enters sleep mode

 remarks: In sleep mode power consumption is reduced to about 20 uA plus sink and source current of the outputs. If the

ports are initialized as output every 2.3s the sleep mode is stoped by the watchdog.

 The devices PIC12C50x and PIC16C5x switches the i/o pins to input each 2.3 s when a reset is generated by the watchdog

timer.

BASIC instruction set

 ENDASM

86

syntax: ENDASM

 function: Assembler code is placed between the keyword ASM and ENDASM.

 description: the compiler copies all lines between ASM and ENDASM into the source file without any changes. They will be

assembled by iL_ASS16. The syntax of these mnemonics are quite the same as the assembler needs (see iL_ASS16). The

first column is reserved for labels. The ENDASM-command must stand alone in a line, even a REM is not allowed.

Commands in the same line will not be taken into account. After that ENDASM it will be translated into basic.

example:

 ASM

START MOVLW 00h ;clears port RB

 MOVWF RB

 ENDASM

 remarks: ASM and ENDASM are commands, so they need one leading space at least. If your assembler porgram crosses

pages, you must take care to set the page preselect bits or the PCLATH register accordingly or use LJMP and LCALL.

BASIC instruction set

 ERR

87

syntax: ERR var

 function: transfers the contents of the internal error variable into the user defined variable var

 var (8 bit) variable contents the latest error conditions

 description: if a arithmetic function is executed, the internal error flag (overflow) is cleared. If the result exceeds the

variable's value range this overflow flag is set, in this case var has the value of 1. To check this flag, you should copy the

contents of that internal variable into your own by using this command. The internal error variable contents more information

than it is described for the overflow flag. Their contents is bit orientated with the following jobs.

Bit 7 overflow in arithmetic functions (will be cleared before operation begins)

Bit 6 used by the compiler to find the return address in runtime library (only

Bit 5 PIC12C5x and PIC16C5x, because they only have a two level hardware

Bit 4 stack, which is not sufficient.

Bit 3 timeout occurs in SERIN, PULSIN or I2C

Bit 2 counts how deep the GOSUB routines are nested because

Bit 1 this cannot be found out during compilation.

 Bit 0 000 = no UP, 001 = 1 UP, 101 = 5 UP =that is too much.

 remark: ERR value puts the error code to the value value.

BASIC instruction set

 FOR TO NEXT

88

syntax: FOR var = start TO end NEXT var

 function: executes program loops; nesting depth is 16 levels maximum.

 var (8 bit) is the counting variable

 start (8 bit) start value of var when entering the loop, can be variable or constant

 end (8 bit) termination value, if reached, program exits loop (variable or constant)

 description: FOR-NEXT loops are program loops which capsules a series of program statements which must be repeated

serveral times. At the beginning the counting variable var is set to the initialization value start . The following statements are

executed until the keyword NEXT is found. NEXT increments the counter variable var . Then program execution is

continued at the statement following FOR-TO until the counter variable reachs the value of var . The increment step is +1

and fixed. Only sixteen FOR-NEXT loops can be nested. The initialization and termination value can also be expressions, not

only variables and constants. The same restrictions such as the keyword LET are vaild.

 example:

START: FOR var_a = 0 TO 5

 GOSUB read REM wait for external signal

 NEXT var_a

 END

READ: IF ra.0 = 1 THEN GOTO store

 PULSOUT ra.1,5 REM no signal, puls out at RA,1

 RETURN

STORE: LET var_b = 1 REM signal ok, memorize

 RETURN

 remarks: var, start and end are 8 bit variables (0-255). The loop is executed at least one time regardless of the values of

start and end

From version 4.20 onwards leaving FOR-NEXT loops with the help of GOTO is allowed and do not cause any

program confusion as in former releases, independent of the PIC you use (also for PIC 12C5xx respectively

16C5x).

BASIC instruction set

 FREQIN

89

syntax: FREQIN port,pin,time,var

 function: measures the frequency of a signal connected to a certain pin . The measuring time is selectable.

 port (8 bit) port name (RA, RB...)

 pin (8 bit) number of the entrance-pin (0 .. 7)

 time (16 bit) constant (max. 10000)

 var (16 bit) variable to assimilate the result

 description: Measuring time must be a constant value from 1000 to 10. While 1000 results in a solution of 1 Hz, a 10

results in a solution of 100Hz. The real measuring time is only the half (e.g. 500ms if 1000) because both edges (falling and

rising) are counted.

example:

START:

 FREQIN RB,1,1000,var_s REM counts the rising and falling edges at RB,1

REM during 500ms. Because both

REM edges will be counted

REM this corresponds to the frequency.

 Attention!

 This command can be used for xtal frequencies up to 9.9 MHz. If using a higher frequency an error message will be shown.

Neverthenless you could use FREQIN at higher frequencies if time is reduced. In this case the result must be corrected.

 The result of the multiplication of time and xtal may not exceed 9900.

BASIC instruction set

 GOSUB

90

syntax: GOSUB addr

 function: calls subroutines, nested four times maximum at PICs with 14 bit core. PICs with a 12 bit core have no enough

stack space, so nesting of GOSUBs are not allowed.

 addr label used as target

 description: Jump to a subroutine. The statement GOSUB stores the address of the next following statement on the top of

the stack. Then the program branches to the subroutine. At the end of the subroutine the keyword RETURN forces the

program to branch to that statement whose address is stored on the top of the stack.

 example:

START: FOR var_a = 0 TO 5

 GOSUB read REM branches to subroutine

 NEXT var_a

 END

 REM here is the subroutine

 REM with the inquiry of an external

 REM signal and a PULS-output

READ_X: IF ra.0 = 1 THEN GOTO memory

 PULSOUT ra.1,5

 RETURN

 REM signal recognized, remember

MEMORY: LET var_b = 1

 RETURN

BASIC instruction set

 GOTO

91

syntax: GOTO addr

 function: branches to a target label, unconditionally

 addr Label used as target

 description: This compiler iL_BAS16 does't need any line numbers. Targets of branches are marked with labels (addr). A

colon terminates this label. The statement GOTO continues program execution at the statement following the

corresponding label adr. If GOTO is used in IF-CLAUSES it is obligatory and must not be left out.

 example:

START:

 INPUT ra,var_a

 IF var_a = 1 THEN GOTO mark_1

 ...

 GOTO start

 MARK_1: ...

BASIC instruction set

 HIGH

92

syntax: HIGH port,pin

 function: Changes the tris register to configure that pin at port as output (changes the TRIS-register) and sets the output

signal to high (1).

 porti/o port, can be a variable (8 bit) or constant

 pini/o pin , can be a variable (8 bit) or constant

 description: The statement HIGH sets the corresponding bit within the tris register to zero so that the pin becomes an

output and then sets the output level to high (1). This pin remains output until changed by a TRIS or INP statement.

 example:

 LET var_a = 1 REM variable a = pin 1

 START: INPUT ra,var_a REM pin 1 is still input

 IF var_a = 0 THEN GOTO mark_1

 HIGH ra,var_a REM pin 1 becomes output and 5V

MARK_1: ...

 remarks: Do not use the statement HIGH for other variables than port variables. To set a bit within a regular variable use

the statement SET.

BASIC instruction set

 I2CDELAY

93

syntax: I2CDELAY value

 function: slows down the clock frequency of SCL at the I2C bus

 value only constants, number range of 1 to 99 (default = 2)

 description: If the I2C bus is connected to long wires it will be an advantage to slow down the transfer rate. Because the

I2C bus is a synchronous bus slow down the clock on SCL, that is enough. Another reason to slow down transfer rate is a

slow slave device, e.g. if you define a PIC as your own slave device with a high flexibility but slow rate.

 example 1:

 DEFINE sda=2

 DEFINE scl=3

 I2CINIT rb,sda,scl REM Controller works as master

 I2CDELAY 4

START:

. ...

MARK_1: ...

 example 2:

 DEFINE sda=2

 DEFINE scl=3

 I2CINIT rb,sda,scl,SLAVE,ADR=170,BUFFER=$1c REM PIC is slave

START:

 MARK_3: ...

BASIC instruction set

 I2CHARDS

94

syntax: I2CHARDS ADR=addr, RXP=rxp, RXB=rxb, TXP=txp, TXB=txb

 function: Activates the i2c hardware modul (if available) to function as a i2c slave.

 addr defines the device address by which the i2c master can access this slave, must be a constant.

 rxp pointer for the receive buffer, must be a variable

 rxb receive buffer address (first location), can be either a variable or constant

 txp pointer for the transmit buffer, must be a variable

 txb transmit buffer address (first location), can be either a variable or constant

 describtion: This comand uses the i2c hardware modul of some pics. If this hardware is not implemented in the selected

device an error message will occur. The communication between master and this slave runs interrupt controlled in the

background. addr is the device address used by the master to start communication. The last significant bit of addr must be

0. rxp and txp are pointer variables used by the receiving routine (rxp) and transmitting routine (txp). If there is an

address match (the slave is that one the master calls) both pointers (rxp and txp) are reset to the first buffer location and

then all bytes the slave receives are stored in the receiving buffer (rxb). In case the master reads data out of the slave all

bytes come out of the transmit buffer (txb). At the end of communication program control is back to the user. Now you can

check the transmit or receive status, modifiy data, trigger ad converter etc.. Checking the pointer during normal program

operation gives also information about the i2c status. Turn on and off the i2c hardware-slave modul is done by setting and

resetting the interrupt enable bits GIE and PEIE. Before enableing the i2c slave you should reset the SSPIF flag.

example:

 xtal 4.194304

 DEFINE device 16C74, wdt_off, xt_osc, adcfg0

 DEFINE rxpointer = $50 'must be in bank 0

 DEFINE txpointer = $51 'must be in bank 0

 DEFINE rxbuffer = $A0 'must be in bank 0 or 1

 DEFINE txbuffer = $B0 'must be in bank 0 or 1

 DEFINE stack = $60 'necessary cause interrupts

 I2CHARDS adr=100,rxp=rxpointer,rxb=rxbuffer,txp=txpointer,txb=txbuffer

cold:

 set intcon,6 'release PEIE (same as SET PEIE)

 set intcon,7 'release GIE (same as SET GIE)

 res sspif

loop:

 goto loop

or

cold:

 set intcon,6 'PEIE freigeben (auch SET PEIE)

 set intcon,7 'GIE freigeben

 asm

 bcf 0ch,3 'SSPIF-Flag löschen

 endasm

 res sspif 'alternativ zu bcf 0ch,3

loop:

 goto loop 'wartet endlos, da Interruptbetrieb

 let st_fadl=5

 let syn_asy=6

BASIC instruction set

 I2CHARDS (cont.)

95

end

 remark:

The used pointer in I2CHARDS library is truncated to FFH. If more bytes are read or written the library accesses always to

address FFH (bank1).

BASIC instruction set

 I2CINIT

96

syntax: (MASTER) I2CINIT port,sdapin,sclpin

 syntax: (SLAVE) I2CINIT port,sdapin,sclpin,SLAVE,ADDR=addr,BUFFER=addr (,WAIT=port,pin

 function: configures the port and pins as a bus for I2C

 port i/o port, can be a variable or constant (8 bit)

 sdapin i/o pin it becomes SDA (data line) of the I2C bus

 sclpin i/o pin it becomes SCL (clock line) of the I2C bus

 to implement the slave function more arguments are necessary

SLAVE links the slave routine to the program.

ADDR=addr device address, can be variable (8 bit) or constant

BUFFER=addr defines the start address of the transmit and receiving buffer

 description: This statement changes the tris register. If in master mode these pins become output, in slave mode they

become input. In master mode the output levels are set to default levels.

example 1:

 DEFINE sda=2

 DEFINE scl=3

 I2CINIT rb,sda,scl REM PIC is master

START:

MARK_1:

 ...

 example 2:

 DEFINE sda=2

 DEFINE scl=3

 I2CINIT rb,sda,scl,SLAVE,ADDR=170,BUFFER=$1c

rem PIC is slave master calls this slave at adr. 170 all received data are stored in 1CH to 7FH.

START:

MARK_1:

 ...

remark to example 2

The device address is 170 for writing and 171 for reading. You have to take care that there will be no conflict with other

devices. The communication buffer has 4 bytes if you use a 16C84 (1CH to 1FH). In this case, the master is allowed to write 4

bytes into this slave (see I2CSLAVE).

 remark: During program execution you may not change the according bits in the tris register. The command I2CINIT is a bit-

orientated command. Using a 4 MHz crystal you get a SCL frequency of about 30kHz. A 12 MHz crystal is sufficient to get the

standard clock rate of SCL (100kHz). Having 20 Mhz you reach the maximum of the bit rate.

The switch WAIT isn't implemented at the present.

 Corresponding the I2C-specification you have to connect an pull-up-resistor to both bus SCL and SDA wire because the

software gives the slave-module the possibility to insert a WAIT-cycle. therefor SCL will be set up as an input.

BASIC instruction set

 I2CINIT (cont.)

97

remember:

High level on the I2C bus is not active driven but generates by pullup resistors.

BASIC instruction set

 I2CRD

98

syntax: I2CRD addr1, var

 function: reads the value out of the module with the adress I2C addr1 and hands it over to the variable var. At that read

command no start- or stop-condition is generated.

 adr1 I2C-module-adress

 var 8-bit-variable, read value will be stored there.

 description: Reads a value out of the I2C-module and hands it over to the variable var . Usually memory-modules have a

auto-increment-device. When you want to read value out of another than the following adress you have to reset the adress

counter of the module with the help of I2CWR

example:

 I2CINIT ra,2,3 REM I2C init.

 Start: I2CSP 'STOP condition

 I2CST 'START condition

 I2CWR 160,2 REM Seconde at the RTC PCF 8583P

 I2CRD 160,var_a REM read secondes

 I2CRD 160,var_b REM read minutes

 I2CRD 160,var_c REM read hours

BASIC instruction set

 I2CREAD

99

syntax: I2CREAD addr1, var

 function: reads a byte out of a I2C device with the device address addr1 and stores it in the variable var

 addr I2C-device address

 var 8 bit variable, to store the byte which is read.

 description: First the device address is transmitted to all I2C slaves. The device which gets an address match

acknowledges the reception. Now the slave device transmits the data byte to the master. If you are using standard memory

devices, please remember that an autoincrement sets the internal address pointer to the next memory cell. For sequential

read or write no special attention is necessary. But if you want random read you should set the internal address pointer to the

desired memory address by using the I2CWRITE statement.

 example:

 I2CINIT ra,2,3 REM I2C init.

START: I2CWRITE 160,2 REM addr. With the sec at PCF 8583P

 REM set the internal address pointer to the desired address (here 2)

 REM this is sequential read

 I2CREAD 160,var_a REM read the seconds, store it in var_A

 I2CREAD 160,var_b REM read the minutes

 I2CREAD 160,var_c REM read the hours

Marke_1

BASIC instruction set

 I2CSLAVE

100

syntax: I2CSLAVE

 function: Communicate with master via a buffer. The direction of that communication is defined by the R/W bit in the device

address.

 description: The PIC controller becomes an intelligent slave device (I2CSLAVE). This statement branches to the runtime

library. Here it stays in a loop until the address is received. If this address isn't the right one, the program leaves the runtime

library with bit 3 set in the internal error variable. In case of address match the further processing depends on the read and

write bit in the received address. In one case the slave transmits the contents of the communication buffer, in the other case it

receives bytes form the master and stores them into the communication buffer (everytime it's the same buffer). At the end of

communication (teminated by a missing ACK bit) the program returns from runtime library. The concept of the

communication buffer was choosen because of its flexibility. After return from the runtime library the user can examine bit 3 of

the error variable. If this bit is zero (address match), the user can examine the communication buffer if the master has sent

datas. If the master has read the buffer, now it can be modified for the next read cycle. Because this function is only

implemented in software the transfer rate is relativly low. At 4 MHz it is about 35kHz, at 12MHz it is enough for standard

clock rate (100kHz).

 example:

REM reads 4 bytes from I2C master and writes them into a lcd

 DEFINE ERR=ERR

 DEFINE buffer = $20 as byte

 DEFINE var_a = $20 as byte

 DEFINE var_b = $21 as byte

 DEFINE var_c = $22 as byte

 DEFINE var_d = $23 as byte

 I2CINIT ra,2,3,SLAVE,ADR=170,BUFFER=buffer REM I2C init.

 LCDINIT rb,1,2

 LCDCLEAR

START:

 IC2SLAVE

 IF ERR,3=1 THEN GOTO START REM if wrong address

 LCDWRITE 1,1,var_a,var_b,var_c,var_d REM these variables are within the buffer

 remarks: see I2CDELAY

BASIC instruction set

 I2CSP

101

syntax: I2CSP

 function: creates a STOP-condition

 description: Neither a START- or a STOP-condition will be generated with the commands I2CRD and I2CWT. They must

be created at the corresponding position with I2CST and I2CSP.

Why?

There are I2C-modules with which you can't use the command I2CREAD respectively I2CWRITE because they have a

"modified" protocol. You also have to use these single commands to implement the function REPEATED START.

example:

 I2CINIT ra,2,3 REM I2C init.

START: I2CSP 'STOP condition

 I2CST 'START condition

 I2CWR 160,2 REM second at RTC PCF 8583P

 I2CRD 160,var_a REM read second

 I2CRD 160,var_b REM read minute

 I2CRD 160,var_c REM read hour

 I2CSP ' STOP condition

BASIC instruction set

 I2CST

102

syntax: I2CSP

 function: creates a STOP-condition.

 description: Neither a START- or a STOP-condition will be generated with the commands I2CRD and I2CWT. They must

be created at the corresponding position with I2CST and I2CSP.

Why?

There are I2C-modules with which you can't use the command I2CREAD respectively I2CWRITE because they have a

"modified" protocol. You also have to use these single commands to implement the function REPEATED START.

example:

 I2CINIT ra,2,3 REM I2C init.

START: I2CSP 'STOP condition

 I2CST 'START condition

 I2CWR 160,2 REM seconde at RTC PCF 8583P

 I2CRD 160,var_a REM read secondes

 I2CRD 160,var_b REM read minutes

 I2CRD 160,var_c REM read hours

 I2CSP 'STOP condition

BASIC instruction set

 I2CWR

103

syntax: I2CWR addr1, var

 function: writes to a I2C device with the address addr1 to the memory address addr2 the contents of the variable or the

constant.

 Write without creating a START- or STOP-condition.

 addr1 I2C device address

 addr2/data value for the internal address pointer

 var/const data bytes to store sequentially in the device at address adr2

 description: The constant const or the contents of the variable var is written into the I2C device at address addr2. The

selection of the modules takes palce at the I2C-bus itself by its module address addr1 . Although memory devices most of

the modules have an autoincrement build inwhich means the internal addresscounter will be increased automatically during a

read- or write-access by one, you must set addr2 (the desired address) at each I2CWR statement.

 example:

 I2CINIT ra,2,3 REM I2C init.

START: I2CSP 'STOP condition

 I2CST 'START condition

 I2CWR 160,2 REM second at RTC PCF 8583P

 I2CRD 160,var_a REM read second

 I2CRD 160,var_b REM read minutes

 I2CRD 160,var_c REM read hours

 I2CSP 'STOP condition

BASIC instruction set

 I2CWRITE

104

syntax: I2CWRITE addr1, addr2, var/const

 function: writes to a I2C device with the address addr1 to the memory address addr2 the contents of the variable or the

constant.

 addr1 I2C device address

 addr2/data value for the internal address pointer (if RAM otherwise any data byte)

 var/const data bytes to store sequentially in the device at address adr2 (if RAM otherwise it is the second data byte).

 description: At first the master writes the device address to the I2C bus. If an address match occurs the next data byte is

written into this device. If this is a memory device that byte is interpreted as an address and written into the internal address

pointer. The constant const or the contents of the variable var is written into the I2C device at address adr2, if the selected

device is a memory device.

Otherwise the byte following the device address is a regular data byte. Although the memory devices have an

autoincrement build in, you must set addr2 (the desired address) at each I2CWRITE statement.

 example:

 I2CINIT ra,2,3 REM I2C init.

START: I2CWRITE 160,2 REM write second at RTC PCF 8583P

 I2CREAD 160,var_a REM read second

 I2CREAD 160.var_b REM read minutes

 I2CREAD 160,var_c REM read hours

 MARK_1

BASIC instruction set

 IF-THEN-ELSE

105

syntax:

 IF var = condition THEN addr

 IF var = condition THEN addr1 ELSE addr2

 IF port,bit = 0 THEN addr1 ELSE addr2

 IF port,bit = 1 THEN addr1 ELSE addr2

 function: conditional branch to label addr , if condition match.

 port,bit (8-Bit) port and bit number 0 - 7

 var (8/16-Bit) variable to compare

 condition (8/16-Bit) reference value, can be a variable or constant

 adr target address (Label), to branch

 description: IF compares the variable var with another value condition and branches to the target address addr

(label), if true

Following comparision are available:

= equal

<> not equal

< less than

> greater than

<= less or equal

>= greater or equal

 Attention: having a bit- comparison only the operator '=' is valid !!!

 example:

 IF var_a <= 5 THEN LET var_b = 0 ELSE GOTO loop

 IF RA,1 = 0 THEN GOTO loop

wrong:

 IF var_a <= 5 THEN LET var_b = 0 ELSE var_b = 1: GOTO loop

 remark: If THEN or ELSE are followed by a equation, it must begin with LET . If branches are following you have to use the

keywords GOTO or GOSUB . It is understood that only one equation is allowed behind THEN and ELSE.

 For multilines the command ON var GOTO respectively ON var GOSUB is at your disposal.

BASIC instruction set

 INC

106

syntax: INC var

 function: var becoms var + 1

 description: The command DEC var increments the value of the variable var by 1. This command is the code optimized

equivalent to LET var = var +1. In contrary to command INC which doesn't have regard for it checks the validity range ot the

result.

example:

START:

 LET var_a = 10 REM variable var_a = 10

 INC var_a REM var_a = 11

 remarks: see also DEC

BASIC instruction set

 INKEY

107

syntax: INKEY var

 function: reads a 4 x 4 (4 x 3) key matrix and returns a 8 bit value

 description: A 4 x 4 key matrix is scanned and the corresponding code is returned into the variable var . The key matrix

has to be connected in a fixed fashion at port RB or if available at RC or RD. This fixed wiring allows to connect a LCD at the

same port, too. In this case the kex matrix is reduced down to 4x3 because the signal E of the LCD may not be used for

scanning the matrix. Additional resistores are necessary for decoupling (see schematic). The command INKEY initializes the

tris registers to input and output as required. At the end of this command the tris registers is restored by the original value.

This is important for the lcd functions. The original output levels are not restored.

* decoupling resistors necessary if a lcd is connected to the same port

To define the desired port and the conversation table use the statement DEFINE KEYS.

Rx4 is not used if LCD is connected at the same port

 example:

 DEFINE KEYS rb,0,"0","1","2","3","4","5","6","7","8","9", {+

 "A","B","C","D","E","F"

START:

 INKEY var_a REM read key matrix

BASIC instruction set

 INKEY (cont.)

108

IF var_a=0 THEN GOTO start REM no key pressed?

MORE:

 ...

 remarks: see also DEFINE KEYS

Between two INKEY commands it must be a delay of 10ms. If this delay is not reached by the

other BASIC commands insert a WAIT 10

BASIC instruction set

 INP

109

syntax: INP port,pin

 function: configures pin at port as input

 port i/o port, can be a variable or constant (8 bits)

 pin i/o pin, can be a variable or constant (8 bits)

 description: The INP command changes the tris register to get the desired pin at port as an input. Now this pin can be

read by INPUT or IF.

example:

 INP ra.0 REM pin RA.0 is input

START:

 IF ra,0 = 1 THEN GOTO more REM if a high is at pin RA.0 then branch to MORE

 GOTO start REM else jump to START

MORE:

 ...

 remarks: INP is a bit command

BASIC instruction set

 INPUT

110

syntax: INPUT port,var

 function: reads the whole port into var (8 bits)

 port i/o port, can be a variable or constant (8 bits)

 var (8-Bit) read value transfered into the variable var or constant

 description: The logic levels at a port are read (all 8 bits at once) and stored in var. The tris register will not be changed.

 example:

 TRIS ra=15

 INP ra.0 REM port RA as input

START:

 INPUT ra,var_a

 LET var_a = var_a and 1 REM only bit 0 is relevant

 IF var_a = 1 THEN GOTO more REM if RA.0 is high, branch to MORE

 GOTO start REM jump to START

MORE:

 ...

 remark: INPUT is a byte command

BASIC instruction set

 INTERRUPT

111

syntax: INTERRUPT label,level (,gied)

 label branch address at which starts the interrupt program

 level relevant edge in case of a RB0-interrupt (manipulated OPTION-register), HL or LH

 gied switches off the interrupts before each BASIC-command, after that they are switched on again.

 function: tells the compiler that somewhere in the program an user defined interrupt service routine will be found and must

be put in the internal interrupt chain.

 description: The user defined interrupt service routine (ISR) starting at label is queing in the internal interrupt chain. The

level argument defines the slope at which an interrupt should occur (pin RB0). This information is stored in the option

register. The gied argument, which is optional, solves the reentrance problem. This problem appears every time when an

interrupt occurs while the controller executes a BASIC command that uses the internal register ARG0, ARG1 etc. If the

interrupt occurs at that time the actuall program is stopped and the ISR will be started. If this ISR also uses the internal

register ARG0, ARG1 etc their contents will be corrupted for the main routine because the original contents is not saved. To

store these registers, a stack is necessary. The stack cannot be implemented to PICs with less data memory. So gied is the

only way to go. If active, the GIE bit (global interrupt enable) at INTCON register is set to zero at the beginning of a BASIC

statement and set to one at the end. So all interrupts are disabled during the execution of a BASIC statement. This prevents

data corruption in the registers ARG0, ARG1 etc but on the other hand it stretches the interrupt response time with a non

constant factor.

 See also chapter INTERRUPTS

 example:

 define device 16c84

 xtal 4.19

 INTERRUPT intserv,hl,gied REM intserv = name of ISR, hl = falling slope at RB0

START:

 GOTO start REM keep in main loop

 ...

 INTPROC

INTSERV:

 ...

 ...

 INTEND

 remarks: The INTERRUPT command is not available with PIC12C50x and PIC16C5x . (see also chapters INTERRUPTS

and DEFINE STACK)

BASIC instruction set

 INTEND

112

syntax: INTEND

 function: marks the end of the interrupt service routine (ISR).

 description: The ISR will be left by the RETFIE command. This is necessary because the ISR is constructed like a

subroutine. The regular return from a subroutine with RET or RETLW cannot be used here because these commands do not

restore the GIE bit.

 example:

 define device 16c84

 xtal 4.19

 INTERRUPT intserv,hl,gied REM intserv = name of ISR, hl = falling slope at RB0

 START:

 GOTO start REM keep in main loop

 INTPROC

INTSERV

...

...

 INTEND REM teminates ISR with RETFIE

 remarks: The INTEND command is not available with PIC12C50x and PIC16C5x . (see also chapters INTERRUPTS and

DEFINE STACK)

BASIC instruction set

INTPROC

113

syntax: INTPROC

 function: The lines between INTPROC and INTEND belongs to the user defined interrupt service routine.

 description: identifies the following lines as the ISR. The starting address is put into the internal interrupt chain.

 example:

 define device 16c84

 xtal 4.19

 INTERRUPT intserv,hl,gied REM intserv = name of ISR, hl = falling slope at RB0

START:

....

 GOTO start REM jumps to START

 INTPROC REM ISR follows

INTSERV:

 INTEND

 remarks: The INTPROC command is not available with PIC12C50x and PIC16C5x . (see also chapters INTERRUPTS and

DEFINE STACK)

BASIC instruction set

 LCDCLEAR

114

syntax: LCDCLEAR

 function: clears the contents of the LCD and returns cursor home (position 1,1)

 description: The special clear command is sent to the lcd.

 example:

START:

 LCDCLEAR

 GOTO start REM jump to START

MORE:

....

 remarks: The LCDCLEAR command does not check wether a lcd is connected or not.

BASIC instruction set

 LCDDELAY

115

syntax: LCDDELAY const

 function: increase the delay times within the lcd commands.

 description: The commands LCDINIT, LCDCLEAR and LCDWRITE do not check the BUSY bit of the lcd. Instead a delay

loop prevents data collision in the lcd device. The data sheet shows a wide range of delays especially with the commands

LCDCLEAR and HOME. The compiler generates a delay of about 1ms which could be too less for some displays. The

command LCDDELAY const tells the compiler how many times the delay has to be repeated. The value of const is

between 1 to 99, the default value is 2 (*).

 example:

START:

 LCDDELAY 3 REM delay is now 3ms

 GOTO start REM jump to START

MORE:

 ...

* depends on xtal frequency. Sometimes only up to 6 or 7 possible (compiler stops with error message)

BASIC instruction set

 LCDINIT

116

syntax: LCDINIT port,lines,columns (,NBLK) (,CURSON) (,UPLINES)

 function: sends the initialization string to the LC-display

 port i/o port, must be a constant (e.g. RB)

 lines numbers of lines of the lcd (1,2 or 4)

 columns numbers of columns of the lcd (8, 16, 20, 24, 32, 40)

 NBLK no blank = leading zeros within decimal numbers are visible

 CURSOR turns cursor on

 UPLINES alternative connection of the lcd (see below)

description:

A LCD gets the suitable initialization string. The controller of the lcd device must be a HD44780. To minimize the numbers of

used i/o- pins, the lcd is used in a 4 bit mode. Also the R/W pin of the lcd is tied to ground so that no reading of the lcds

internal RAM is possible.

Following lcd are supported:

numbers of lines numbers of columns

1 8, 16, 20, 24, 32, 40

2 16, 20, 32, 40

4 16, 20

The lcd may be connected at port RB, RC or RD. The following assignment of signals and pins is fixed.

Rx0 D4 (11) (in 4 bit mode, only the upper nibble is used)

Rx1 D5 (12)

Rx2 D6 (13)

Rx3 D7 (14)

Rx4 E (6)

Rx5 R/S (4)

 GND (1 u.5)

 Vcc (2)

 Vo (3) (contrast)

 example :

 LCDINIT RB,4,20 REM LCD initialization

START:

 LCDWRITE 1,1,"Ing.Buero LEHMANN"

 LCDWRITE 2,1,"Fuerstenbergstr. 8a"

 LCDWRITE 3,1,"Phone 0049 7831 452"

 FOR var_a=0 to 255

 LET var_t=var_a*var_a REM calculate square of A1

 LCDWRITE 4,1,var_a REM show A on lcd

 LCDWRITE 4,15,var_t REM show square of A

 NEXT var_a

 GOTO start REM loops to START

MORE:

BASIC instruction set

 LCDINIT (cont.)

117

An alternative connection for the lcd!

Since release 5.5-10 you can connect the lcd to a port in two alternative ways. In this case pins Rx0 and Rx1 are not

connected. This is very interesting because the RB0 interrupt is available for other functions. In this case no matrix key pad

can be connected parallel to the lcd. Connection is done as followed.

 UPLINES UPLINESX

Rx2 = E (Pin 6) Rx2 = R/S (Pin 4)

Rx3 = R/S (Pin 4) Rx3 = E (Pin 6)

the rest of the pins are tied in the same way either for UPLINES or UPLINESX

Rx4 = D4 (Pin 11)

Rx5 = D5 (Pin 12)

Rx6 = D6 (Pin 13)

Rx7 = D7 (Pin 14)

(Pin 5 = RW must tied to GND)

(Pin 1 = GND)

(Pin 2 = Vcc = +5V)

(Pin 3 = Vo = contrast)

To select this connection scheme use keyword UPLINES (upper lines) or UPLINEX (upper lines crossover) with LCDINIT.

E.g.

 LCDINIT rb,4,20,uplines

 remarks: The contents of the tris register is set automatically. They may not be changed during program execution.

BASIC instruction set

 LCDTYPE

118

n (,var)

 syntax: LCDTYPE n (,var)

 function: defines how the lcd is connected to the PIC

 n constant from 0 to 4

 var additional variable (must be located at page 0) necessary for n =3 and n=4

 description: Many customers asked for implementation of an lcd via a serial-parallel converter e.g. 74LS164. To select the

different kind of lcd connection is done by the new BASIC keyword LCDTYPE n (,var).

LCDTYPE 0 standard connection as described under LCDINIT. This is a default value

LCDTYPE 1 as LCDTYPE 0 and UPLINES (UPLINES are also selectable with LCDINIT command)

LCDTYPE 2 as LCDTYPE 0 and UPLINESX (UPLINESX are also selectable with LCDINIT command)

LCDTYPE 3,var connections see below

LCDTYPE 4,var connections see below

Connections between lcd, PIC and 74LS164 must be done as followed:

LCD pin --> 74LS164 pin PIC pin signal name

Vss 1 ground

Vdd 2 +5V

Uo 3 poti (contrast)

RS 4 Q7 13

R/W 5 ground

E 6 enable

D0 7 Q0 3

D1 8 Q1 4

D2 9 Q2 5

D3 10 Q3 6

D4 11 Q4 10

D5 12 Q5 11

D6 13 Q6 12

D7 14 ground

 D1 1 data

 D2 2 +5V

 GND 7 ground

 CLK 8 clock

 MR 9 +5V

 U+ 14 +5V

Along with this kind of lcd controlling there a serveral disadvantages:

- Only 1- or 2-lines lcd are useable. Character per line can be 8, 16, 20, 24, 32 or 40.

- Cursor is not locatable. LOCATE y,x produces a syntax error.

- Only LCDWRITE 1,1,.... or LCDWRITE 0,0,.... is usable.

 To write into the second line you must write more characters as defined in columns (LCDINIT)

- Writing to lcd is much slower.

- An additional variable is necessary.

- No keypad can be connected to the same port.

- Only characters within the range of 0 to 7FH can be used. No special characters are available.

LCDTYPE n (,var) must be placed above LCDINIT !

BASIC instruction set

 LCDTYPE (cont.)

119

The additional variable must be located on page 0.

examples:

 LCDTYPE 3,var : LCDINIT port,clock,lines, columns

 LCDTYPE 4,var : LCDINIT port,clock,data,enable,lines, columns

 port can be any available port. clock defines the connection to pin 8 at 74LS164, data is for pin 1. enable is connected

directly from PIC to lcd (see LCDINIT).

E.g.

 If LCDTYPE 3,var is selected and LCDINIT rb,5,2,16 then clock signal is on RB5, data on RB6 and enable on RB7, the lcd

has 2 lines and 16 characters/line.

 If you wish clock on RB7, data on Rb3 and enable on RB0 then use LCDTYPE 4,var and LCDINIT rb,7,3,0,2,16.

 clock , data and enable must be 8 bit constants with values of 0 to 7.

Hint:

LCDWRITE 0,0,.... continues at the last cursor position.

BASIC instruction set

 LCDWRITE

120

syntax: LCDWRITE y,x,"TEXT",varhex,$,varascii,#,vardez,varbin,%,vardez,:2

 function: writes texts, variables and contants onto the lcd.

 y,x sets the cursor to column and row from which on the output will be seen on LCD

 "TEXT" text string to be outputted

 varhex,$ variable displayed as hexdecimal number

 varascii,# variable sent as ASCII character to lcd

 varbin,% variable displayed as binary number

 vardez variable displayed as decimal number

 vardez,:2 variable displayed as decimal number with 3 digits before and 2 digits

 behind a point (quasi float appearence)

 decription: Normally variables are displayed in decimal notation. A quasi float number appears on the lcd if you add a colon

with the numbers of digit for the post decimal position. Adding a formating character, separated by a comma, the variable can

be displayed as a hexdecimal or binary number. Behind the colon the number of post decimal positions. This statement must

be a constant.

The numbers of digit are fixed:

see:

8 bit hexadecimal 2 digits

16 bit hexadecimal 4 digits

8 bit binary 8 digits

16 bit binary 16 digits

8 bit decimal 3 digits (maybe 4 digits)

16 bit decimal 5 digits (maybe 6 digits)

Doing so you can write numbers flush-right one below the other without problems.

 example :

 LCDINIT RC,4,20 REM LCD initialization

START:

 LCDWRITE 1,1,"Ing.Buero LEHMANN" REM upper left corner

 LCDWRITE 2,1,"Fuerstenbergstr. 8a" REM second line

 LCDWRITE 3,1,"Phone ++49 (0)7831 452"

 FOR var_a=0 to 255

 LET var_t=var_a * var_a REM calculate square

 LCDWRITE 4,1,vaa_a REM output a as decimal value

 LCDWRITE 4,15,var_t REM display square

 NEXT var_a

 GOTO start REM jump to START

MORE:

 remarks: The contents of the tris register is set automatically. They may not be changed during program execution.

 If you want to write to the cursor's next position use the coordinates 0,0.

BASIC instruction set

 LCDWRITE (cont.)

121

Important hints on lcds:

Experience over serveral years shows a wide range of tolerances of lcds specifications. If you get trouble with lcds try

following actions:

Problem 1:

lcd cannot be initialized or nothing can be written on.

Solution:

Insert the LCDDELAY instruction. If already done increase the value. Shorten the cable between lcd and microcontroller.

Problem 2:

After running well, suddenly the lcd shows wrong characters. Right and wrong characters can be mixed. Sometime the text is

scrolling.

Solution:

First try to solve this problem with the LCDDELAY instruction. If this fails pay attention not to refresh to often. A refresh time of

0.5 to 1 second is enough and makes less trouble.

Problem 3:

There are lcds sold as 1 line by 16 characters. But they are assembled very cheap and a multiplexer ic is left over. Writing to

such an lcd the first 8 characters are right but the second 8 characters are lost.

Solution:

They are not really lost but they are invisible because the appear on line 2 which is not assembled. Divide the output into 2

parts and address the second part to line 2. This lcd cannot be used if a number (3 or 5 bytes) should displayd around this

border.

BASIC instruction set

 LET

122

syntax: LET var = value [operator value...]

 function: assigns a constant or a result of an operation to the variable var

 var (8 or 16 bit) Variable with the result of an assignment respectively arithmetic operation.

 value Operand

 operator Operation (+, -, *, ...see below)

 description: To the left of the equal sign must be a variable. On the right there may be a constant, another variable or an

equation containing variables and constants. The keyword LET is obligatory and cannot be left off. The value which shall be

assigned to a variable var can be the result of a complex mathematical and/or logical calculation.

Following operators are implemented:

Addition + a + b

Subtraction - a - b

Multiplication * a * b

Division / a / b

Modulo mod a mod b (modulo, division remainder)

logical AND and a and b

logical OR or a or b

logical EXOR xor a xor b

 example:

 LET length = 5 REM var length = 5

 LET width = 3 REM var width = 3

 LET area = length * width REM var area = 15

 LET var_a = 3 + 5 / 2 REM value var_a = 4

 LET field(index) = 3,5,var_a REM up to 10 items

 remarks: No parenthesis are allowed so the compiler calculates the expression from the left to the right side without any

regards to the mathematical conventions.

BASIC instruction set

 LOCATE

123

syntax:LOCATE y,x

 function: Moves cursor to position y,x on LCD.

 y,xdefines column and line for the next writing on lcd

 decription:Moves cursor to column x in line y. X and y must be equal or less of the values defined in LCDINIT. Turn cursor

on or off with the commands CURSON and CURSOFF.

 example :

 LCDINIT RC,4,20 REM LCD initialization

START:

 LCDWRITE 1,1,"Ing.Buero LEHMANN" REM upper left corner

 LCDWRITE 2,1,"Fuerstenbergstr. 8a" REM second line

 LOCATE 3,1 REM move cursor to line 3

 LCDWRITE 0,0,"Phone ++49 (0)7831 452" REM write at cursor position

 FOR var_a=0 to 255

 LET var_t=var_a * var_a REM calculate square

 LCDWRITE 4,1,var_a REM output a as decimal value

 LCDWRITE 4,15,var_t REM display square

 NEXT var_a

 GOTO start REM jump to START

MORE:

BASIC instruction set

 LOFREQ

124

syntax: LOFREQ port,pin,frq,duration

 function: generates a frequency at port,pin with the duration

 port i/o port, can be a variable or constant

 pin i/o pin, must be a constant

 frq frequency in Hz, must be a constant

 duration time in ms, how long the sound is generated, must be a constant

 description: The LOFREQ command generates a sound at an io pin. The frequency range is from 1Hz to 2000Hz. For

higher frequencies use the SOUND command.

 example:

START:

 LOFREQ ra.0,100,20 REM generates a tone for about 20ms

 REM with the frequency of 100Hz

 REM at port Ra.0

 GOTO start

 remarks: The command LOFRQ is optimized to 100 Hz at a xtal frequency of 4Mhz. The preferred range is from 1 Hz -

2000 Hz. At 100Hz the error is less then 1%. At 1000Hz the error is about 4,5% (957Hz) and at 10000Hz the error is about

49% (6680Hz).

BASIC instruction set

 LOOKDN

125

syntax: LOOKDN var, target value, value 1, value 2,..., value n

 function: looks for a value within a list and if found, it returns the value's position within the list

 var (8 bit) variable where the return value (position) is stored, if found must be a variable

 target value (8 bit) value to look for, can be a variable or constant

 value n... (8 bit) liste of values to compare with target value can be variables or constants.

 description: The command LOOKDN compares the target value with the values value 1 , value 2 etc and if a match

occurs it returns the position within the list. The contents of var isn't changed if there is no match.

 example:

 LET var_b = 0

START:

 SERIN ra.0,9600,var_a REM reads a byte via SERIN

 LOOKDN var_b,var_a,65,88,93 REM if var_a =65 then var_b = 0

 REM if var_a =88 then var_b = 1

 REM if var_a =93 then var_b = 2

 REM if var_a <> 65 and 88 and 93 then var_b = unchanged

 remarks: If the list consists only of constants the compiler gererates a memory saving code using the instruction RETLW

xx . But if there is only one variable within that list another code is generated. To use the RETLW instructions, it is

necessary that this code is at the beginning of a memory page because of it's 8 bit offset calculation. This is done

automatically by the compiler but all items of LOOKDN and LOOKUP may not exceed 100 . If the list exceeds the first 255

program memory words, the compiler doesn't generates a warning. In doubt, do force the compiler to produce no code with

retlw instruction by adding a dummy variable at the end of the list. Only 8 bit variables are allowed.

Automatically the compiler sets the generated code close to the beginning. But anyway the total number of items (LOOKUP

and LOOKDOWN) isn't allowed to be more than about 100.

BASIC instruction set

 LOOKUP

126

syntax: LOOKUP var,position, value 1, value 2,.., value n

 function: returns the value out of a list at a certain position

 var (8 bit) variable to store the value picked up at position

 position (8 bit) position of the value to read , can be a variable or constant

 value n (8 bit) a list of values, can be variables or constants

 description: The command LOOKUP picks up the value at a certain position out of the list. If there are enough items

within the list, the found value is stored in var . If the list is shorter and the value of position tries to access beyond the

bounds the contents of var is not changed.

example:

START:

 FOR var_a = 0 to 25

 LOOKUP var_b,var_a,65,66,67, ... REM converts the offset (0-25)

 REM to a1 ascii characters (A-Z)

 NEXT var_a

 remarks: If the list only consists of constants the compiler gererates a memory saving code using the instruction RETLW

xx . But if there is only one variable within that list another code is generated. To use the RETLW instructions, it is necessary

that this code is at the beginning of a memory page because of it's 8 bit offset calculation. This is done automatically by the

compiler but all items of LOOKDN and LOOKUP may not exceed 100 . If the list exceeds the first 255 program memory

words the compiler doesn't generates a warning. In doubt, force the compiler not to produce the code with retlw instruction by

adding a dummy variable at the end of the list. Only 8 bit variables are allowed.

BASIC instruction set

 LOW

127

syntax: LOW port,pin

 function: the port,pin becomes an output. The output signal is low (0).

 port i/o port, can be a constant or variable (8 bit)

 pin i/o pin, can be a constant or variable (8 bit)

 description: The command LOW changes the according entry in the tris register to set the pin to output. Afterwards a low

signal is outputted. The output mode keeps on. That means the TRIS-register will be changed.

 example:

 LET var_a=1 REM variable var_a = pin 1

START: INP ra,var_a REM pin 1 is input

 IF var_a.0=1 THEN GOTO MORE

 LOW ra,var_a REM pin 1 is now output and LOW

MORE:

 ...

 remarks: Do not use the LOW command to change variables, in this case use RES. LOW is a bit command.

BASIC instruction set

 ON GOSUB

128

syntax: ON var GOSUB addr0,addr1, addr2, ...,addr n

 function: branches to a subroutine whose address is determine by the offset in var

 var (8 bit) variable

 addr0, addr1 addresse of subroutines (labels), can be variables or constants.

 description: The program branches to the subroutine whose target address (label) is at the position stored in var. Is var =

2, subroutine at adr2 is called. Points var to a no existing target, ON-GOSUB is ignored and program execution is continued at

the command that follows.

example:

START:

 SERIN ra.0,9600,var_a REM reads seriell port, a value

 ON var_a GOSUB label6,label7,label8 REM if var_a = 0, go to subr. label6

 REM if var_a = 1, go to subr. label7

 REM if var_a = 2, go to subr. label8

 GOTO start

 LABEL6: . . . REM subroutine 1

 RETURN

 LABEL7: . . . REM subroutine 2

 RETURN

 LABEL8: . . . REM subroutine 3

 RETURN

 remarks: Nested subroutines are not available for PIC with 12 bit cores. All other types allow up to 4 nested subroutines.

BASIC instruction set

 ON GOTO

129

syntax: ON var GOTO addr0,addr1,...,addr n

 function: branches to address label determine by the contents of var

 var (8 bit) variable

 addr0, addr1 address label, can be variable or constant

 description: The program branches to the routine whose target address (label) is at the position stored in var . Is var = 2,

routine at label addr2 is called. Points var to a no existing target, ON-GOTO is ignored and program execution is continued at

the command that follows.

 example :

START:

 SERIN ra.0,4800,var_a REM reads variable a via rs232

 ON var_a GOTO label6,label7,label8 REM if var_a = 0, go to label6

 REM if var_a = 1, go to label7

 REM if var_a = 2, go to label8

 GOTO start

LABEL6: . . . REM entry point for var = 0

LABEL7: . . . REM entry point for var = 1

 LABEL8: . . . REM entry point for var = 2

BASIC instruction set

 OUTP

130

syntax: OUTP port,pin

 function: configures pin as output

 port i/o port (variable (8 bits) or constant)

 pin i/o pin (variable (8 bits) or constant)

 description: The OUTP command changes the tris register so that the corresponding pin becomes output.

 remarks: Since the last write command to a port is latched this information appears at the pin immediately after changing

the tris register. This is importand if you want to access to a port used as a bidirectional bus, when switching from reading to

writing.

 OUTP is a bit command.

BASIC instruction set

 OUTPUT

131

syntax: OUTPUT port,value

 function: puts out 8 bits (parallel) onto a port

 port i/o port (8 bit), variable or constant

 value (8 bit) variable or constant

 description: The contents of a variable or a absolute term are put out onto a port. The port access is 8 bits parallel. The tris

register is not changed.

 example:

START:

 TRIS RB,0

 LET b1=$AA REM all even bits are set

 OUTPUT rb,b1

 LET b1=$55

 OUTPUT rb,b1 REM all odd bits are set

 GOTO start

 remarks: OUTPUT is a byte command.

BASIC instruction set

 PEEK

132

syntax: PEEK var,address

 function: transfers the contents of a file register into a variable

 var (8 bit) variable

 address (8 bit) absolut address of the file register

 description: The contents of any file register (not only those which are used for user variables), addressed by address , is

transfered to the variable var

 example:

START:

 LET var_b=1

 LET var_a=$1F

 PEEK var_b,var_a REM the contents of rtcc is loaded in $1F

 GOTO start

 remarks: PEEK is a byte command.

It was important in compiler versions 4 and older because the variables were predefined. Now just define a symbol to a

register.

Attention:

Better use LET

e.g.

LET TMR0=5

LET var_a=rtcc

BASIC instruction set

 POKE

133

syntax: POKE address, value

 function: writes value to any file register

 address address of the file register, variable (8 bit) or constant

 value variable (8 bit) or constant

 description: The contents of the variable or the constant is transfered to any fileregister (not only those which are used for

user variables).

example:

START:

 POKE $1F, "A"

 LET var_a=$1F

 PEEK var_b,var_a REM "A" is transfered into var_b via file register $1F

 GOTO start

 remarks: POKE is a byte command.

It was important in compiler versions 4 and older because the variables were predefined. Now just define a symbol to a

register.

Attention:

see PEEK

BASIC instruction set

 PRINT

134

(only 16F62x, 16F81x, 16F87x and 16F88)

 syntax: PRINT port,pin,baud,"text",var

 function: sends text or variables seriel to the pc for debugging

 port output port

 pin output pin

 baud baud rate

 "text" sends the text enclosed by quotes

 var (8/16 bit) sends the contents of the variable var

 decsription: The PRINT command is very useful for debugging. Text, varaible etc can be sent to an ascii monitor on the

PC. Like the LCDWRITE command, you can output a hexadecimal value while appending a '$', '%' for binary format and '#' for

the ascii equivilant.

 example:

 PRINT rb,0,4800,var REM sends variable

 PRINT rb,0,4800,"text",var,$ REM (%=binär, $=hex,)

 remarks: For conversation the PRINT command needs the memory area form 68h to 6Ch on the first page (for

conversion into dezimal you need memory area from 68H to 6CH, binary from 69H to 6CH and hex 6CH). The output is

always 32-bits, therefore 32-bit library will be linked. Leeding 0 will be replaced by blanks.

BASIC instruction set

 PULSIN

135

ATTENTION !!! Command was changed. To get the old functionality of PULSIN use the keyword PULS_IN.

 syntax: PULSIN port,pin,slope,var

 function: measures the length of a puls at a certain pin

 port (8 bits) i/o port, variable or constant

 pin (8 bits) i/o pin, variable or constant

 slope (1, 0) trigger slope, which starts the measuring (1 = LO-HI; 0 = HI-LO)

 var (8/16 bit) variable to store the result

 description: The command PULSIN measures the length of a puls with a solution depending on the xtal frequency. There is

no conversation to a timebase e.g. us. The result is a relative value. The measuring is triggered with a selecteable slope and

finished by the reverse slope. If slope is zero, a falling edge triggers the measuring, one (1) triggers with a rising edge. If

slope is a variable only the LSB (bit 0) is relevant.

example:

 REM messures the frequency at pin RA0

 TRIS rb = 255 REM TRIS-register at input

START: PULSIN ra,0,1,var_z REM read an impulse at ra.0.

 GOTO start

 remarks: The corresponding port,pin first must be set as input. The result may be stored as a 8 or 16 bit variable.

BASIC instruction set

PULS_IN

136

ATTENTION!!! Is equal to the old version of PULSIN (before VERSION 4.1-00)

 syntax: PULS_IN port,pin,slope,var

 function: measures the length of a puls at a certain pin

 port (8 bits) i/o port, variable or constant

 pin (8 bits) i/o pin, variable or contant

 slope (1, 0) trigger slope, which starts the measuring (1 = LO-HI; 0 = HI-LO)

 var (8/16 bit) variable to store the result

 description: The command PULS_IN measures the length of a puls with a solution depending on the xtal frequency. The

result is calculated to a timebase in us. The result is an absolute time value. The measuring is triggered with a selecteable

slope and finished by the complement slope. If slope is zero, a falling edge triggers the measuring, one (1) triggers with a

rising edge. If slope is a variable only the LSB (bit 0) is relevant.

 example:

REM messures the frequency at pin RA0 (set 50 Hz digital signal source) and puts out

REM the errors at RB. 50 Hz are a low-impulse of 10 ms.

 TRIS rb = 0 REM TRIS-register at input

START:

 PULS_IN ra,0,1,var_z REM reads an impulse at ra.0 (16 bit)

 LET var_z = var_z+5 REM round up

 LET var_z = var_z/1000

 LET var_a = 0 REM result weighted

 IF var_z < 93 THEN LET var_a = 8

 IF var_z > 108 THEN LET var_a = 8

 IF var_a > 0 THEN GOTO more

 IF var_z < 96 THEN LET var_a = 4

 IF var_z > 104 THEN LET var_a = 4

 IF var_a > 0 THEN GOTO more

 IF var_z = 100 THEN LET var_a = 1 ELSE var_a = 2

 MORE: OUTPUT rb,var_a REM put out result at rb

 GOTO start

 remarks: The corresponding port,pin must be set as input first. The result may be a 8 or 16 bit variable. The max. width of

the puls that must be measured, depends on the xtal frequency. A higher xtal means smaller pulses may be measured. Using

a 8-bit-variable you just have a pulse duration upto 255 us, with a 16-bit-variable you have 0,65535 s. Using a 8-bit-variable

and an overflow of the measured value this variable will get the LOW-byte of the internal 16-bit masured value. Outrunning

the max value of 0,65535 s the reuslt will be 0. The command is optimized at a xtal of 4 Mhz.

 The input port with the command PULSIN is shortend by factor 10 as the corresponding output impulse with the command

PULSOUT.

BASIC instruction set

 PULSOUT

137

syntax:

 PULSOUT port,pin,duration,H

 PULSOUT port,pin,duration,L

 PULSOUT port,pin,duration

 function: generates a square puls for a certain time

 port i/o port, variable (8 bit) or constant

 pin i/o pin, variable (8 bit) or constant

 duration (16 bit) duration of the puls in units of 10 us, variable or constant

 H generates a high puls (1)

 L generates a low puls (0)

(Absence of H or L will generate a puls which is inverted of the acutal output level)

 description: PULSOUT generates a puls with a resolution of 10us. The duration is from 10us up to 0,65535s. The contents

of the tris register is not changed. The pin has to be defined for output otherwise no puls is put out.

 example:

REM no retriggerable mono stable flip flop with a puls of 100ms.

REM the duratoin of the puls is specified with a resolution of 10 us.

REM at times shorter than 210 us (at 4 Mhz) truncation errors are strongly noticeable

START:

 HIGH rb.0

LABEL1:

 IF ra.0 = 0 THEN GOTO label1 REM wait until ra.0 = 1

 PULSOUT rb,0,10000,H REM generate a puls of 100ms

 REM not retriggerable

WAIT:

 IF ra.0 = 1 THEN GOTO wait

 GOTO label1

 remarks: The puls generated by PULSOUT is 10 times longer than the result of PULS_IN . The max. width of the output

puls depends on the xtal frequency.

BASIC instruction set

 PWM

138

syntax: PWM port,pin,level,duration

 function: generates a puls-width-modulated signal for a certain time.

 port i/o port, variable (8 bit) or constant

 pin i/o pin, variable (8 bit) or constant

 level duty cycle that defines the output voltage, variable (8 bit) or constant (1-255).

 duration duration of the output signal, variable (8 bit) or constant

 description: The PWM command generates a certain amount of pwm signals which are square pulses with various duty

cycles. The corresponding pin is set to output at the beginning of the routine and set to input at the end. This is done

automatically to put this pin on high impedance (TRI-State).

 example:

REM generates a pwm signal that is filtered by a RC combination. This is the way to generate a analogue voltage.

REM (128 / 255) * 5V. Everytime 20 cycles are generated to charge/discharge the capacitor.

START:

 SERIN ra.0,4800,var_a REM read Byte seriel (e.g 128)

 PWM rb,0,var_a,20 REM Output of analog tension corresponding

 REM to the receiving BYTE

 REM of the capacitor of the RC-link

 REM at rb,0 load up to 2,5V

 REM (128 / 255) *5V. 20 charging cycles will be generated.

 GOTO START

BASIC instruction set

 RANDOM

139

syntax: RANDOM var

 function: generates a pseudo random number

 var (8/16 bit) variable, contains the generated value

 description: The RANDOM command generates a pseudo random number which is stored in var . The initial value is the

old contents of var . The new value is calculated by a special algorithem using the value of the program counter. If the rtcc

register is in use, its value is also used for the new random number. var can be a 8-bit- or 16-bit-variable.

example:

START:

 RANDOM var_s REM generates a 16 bit random

 IF var_s < 2000 THEN GOTO less

 IF var_s < 10000 THEN GOTO more

 GOTO start

LESS:

 LOFREQ ra.0,var_s,20 REM generates a sound

 GOTO start

MORE:

 SOUND ra.0,var_s,20 REM generates a sound

 GOTO start

remark:

 It depends mainly on the rtcc (tmr0) register how randomly the numbers will be generated. If CLOCK is actived the

generated random number is ok. Otherwise you should initialize the option register if possible. Reset the t0cs-bit. The result is

a increment of rtcc at each instruction cycle. When you use the 12C5xx the compiler switch TOCS_INT can be set.

BASIC instruction set

 RCTIME

140

syntax: RCTIME port, pin, level, var

 function: measures the charging or discharging time of a capacitor.

 port, pin (8 bit) pin that is connected to the RC circuit.

 level The measuring keeps on as long as this level is at pin.

 var (8 Bit) variable for the result

 description: This command measures the charging or discharging time of a capacitor. Because the lower threshold is

smaller than the upper it is recommended to design the hardware as shown in the schematic. The 10 ohms resistor is for

protection in case of discharging. There is no time reference, the result depends on the xtal frequency. The experience has

shown that a reference to real time is not necessary. In case you need it (e.g. to display the value on a lcd), you may

calculate it by your own (just a few BASIC lines).

 example:

START:

 HIGH ra.0 REM charge the capacitor

 WAIT 1 REM time for charging

 RCTIME ra.0,1,var_a REM measure the time, until the level drops to zero.

BASIC instruction set

 RCTIME (cont.)

141

The 10 ohms resistor avoids shortening in the discarge cycle. The result is relative to the xtal frequency. In most cases no

absolute time measuring is needed. On the other hand it needs only a few program lines to do this in basic.

BASIC instruction set

 READDATA

142

syntax: READDATA var1 (, var2, var3,...)

 function: Reads the next item out of the data list. This data field can have 2048 entries (depending on memory capacity).

 var1 8-bit variable or 8-bit-constant

 description: Very often a large amount of constant values are necessary. In former compiler releases you had to use

LOOKUP and LOOKDWN statements. But these can handle only up to about 100 items. DATA break through this barrier.

Read an item with READDATA increments an internal pointer which controls the access. To reset or set this pointer to a

specified line is the only pointer modification you need.

example:

START:

 RESTORE REM set read pointer points to first item

 READDATA var__a REM read first item (here 65)

 RESTORE label_1 REM set read pointer -> pointer points to the 5th item

 READDATA var_a REM read 5. item, herer 12

 READDATA var_b,var_c,var_d REM read next three items

 GOTO START

 DATA 65,66,67,"F"

LABEL_1:

 DATA 12,45,32,17,25

 remarks: see also DATA , RESTORE

(!! not for 12C5xx and 16C5x !!)

You can also manipulate the data pointer like:

 LET datptr_=datptr_ + offset

BASIC instruction set

 READ

143

syntax: READ addr,var

 function: reads a memory cell at address addr out of the internal EEPROM and stores the value in var

 addr (8 bit) address to read, variable or constant.

 var (8 bit) variable with the result

 description: The READ command reads one of the additional memory cells (eeprom) in a device like PIC16C83,

PIC16C84, PIC16F83, PIC16F84, 16F87 and put the result into var

 example:

 DEFINE ADR=$30 REM ADR to location 30H

 DEFINE VALUE=$31 REM VALUE

 DEFINE I1 = $31

START:

 FOR I1=0 TO 63 REM only 64 bytes

 LET ADR=I1 REM writes a value in each

 LET VALUE=I1*2 REM memory cell

 WRITE ADR,VALUE

 NEXT I1

 LET ADR=2 REM now read the third entry

 READ ADR,VALUE REM into VALUE (must be 4)

remarks:

 (only for PICs with internal eeprom data memory)

BASIC instruction set

 REM

144

syntax: REM or ' (single quotation mark)

 function: the contents of the line after REM or ' will be ignored by the compiler.

 description: Useful for comments or debugging.

 example:

 LET Length=5 REM your comment for this line

BASIC instruction set

 RES

145

syntax: RES

 function: set the corresponding bit of a variable or a port to zero.

 description: In contrast to the LOW command the RES command do not affect the tris register. Therefore this command

can access to regular variables and is faster then LOW.

example:

START:

 RES var_a,0 REM bit 0 in variable var_a is cleared

BASIC instruction set

 RESTORE

146

(not for 12C5x and 16C5x)

 syntax: RESTORE {label

 function: The internal data pointer is reset and points to the first item or is set to any label and points to an item within the

data list.

 Description: Very often a large amount of constant values are necessary. In former compiler releases you had to use

LOOKUP and LOOKDWN statements. But these can handle only up to about 100 items. DATA break through this barrier.

Read an item with READDATA increments an internal pointer which controls the access. To reset or set this pointer to a

specified line is the only pointer modification you need.

example:

START:

 RESTORE REM reads pointer, points to first item

 READDATA var_a REM reads first item (here 65)

 RESTORE label_1 REM pointer points to the 5th item

 READDATA var_a REM read 5. item, here 12

 READDATA var_b,var_c, var_d REM read next three items

 GOTO START

 DATA 65,66,67,"F"

LABEL_1:

 DATA 12,45,32,17,25

 remarks: see also DATA , READDATA

BASIC instruction set

 RETURN

147

syntax: RETURN

 function: Terminate a subroutine and returns to the routine superior.

 description: Every subroutine must be terminate by a RETURN command so that the program can return to the command

which follows the GOSUB.

 example:

START:

 FOR var_a = 0 TO 5

 GOSUB reading REM check an external signal

 NEXT var_a

 END

READING:

 IF RA.0 = 1 THEN GOTO rememb

 PULSOUT RA.1,5 REM no signal, generates a puls

 RETURN

REMEMB:

 LET var_b = 1 REM remembers the signal with the help of variable var_b

 RETURN

 remarks:

BASIC instruction set

 REVERS

148

syntax: REVERS port,pin

 function: defines this pin as output and toggle the actual output signal

 port i/o port, variable (8) or constant

 pin i/o pin, variable (8) or constant

 description: The command REVERS inverts the output signal of an i/o pin. Is this pin configuered as an input, the tris

register is changed so that this pin becomes an output.

example:

START:

 LET var_a=6 REM address of port B

 OUTP ra.0 REM pin 0 is output

 OUTPUT var_a, 0 REM pin 0 is output, give out zero

 REVERS var_a,0 REM set RB,0 to one

 REVERS var_a,0 REM reset RB,0 to zero

 remarks: REVERS should not be used for regular variables, only for port pins. To invert a bit within a variable use the

TOGGLE command.

BASIC instruction set

 SERIN

149

syntax:

 SERIN port,pin,baud,var 1,.var 2. ..., var n

 SERIN port,pin,baud,timeout=x,var 1,.var 2. ..., var n

 SERIN port,pin,baud,parity,var 1,.var 2. ..., var n

 SERIN port,pin,baud,parity,timeout=x,var 1,.var 2. ..., var n

 SERIN port,pin,baud,int,var 1,.var 2. ..., var n

 function: reads data serially from an i/o pin

 port i/o input pin, (8 bit) variable or constant

 pin i/o input pin, (8 Bit) variable or constant

 baud (300 - 9600) baud rate, variable or constant

 parity EVEN, EVEN7, ODD oder ODD7

 timeout (8/16 bit) defines how many cycles the program will wait for the start bit if timeout occurs,

 bit 3 of the internal ERR byte is set

 int enables the RCIE bit for generating an interrupt

 var (8 bit) variable, containing the received data byte

 description: This command reads at port, pin any data byte with the defined baud rate. The argument timeout can only

be used when uart is not used. If timeout is not used, the program remains in a loop until the start bit is detected. If timeout is

defined the waiting loop is execute n-times. If no start bit is detected bit 3 in ERR is set. Timeout can be a variable or

constant.

The time to execute one loop in the waiting loop is about 10 * 4/fq; therefore it is a relative time, depending on the xtal

frequency.

 Int can only be used in interrupt driven input routines. If you want to read a serial data stream within a interrupt service

routine, this routine should be entered when the uart has received a data byte. To enabling interrupt generation int must be

active.

 example:

START:

 LET baud=329 REM at 6,144 MHz for 4800 baud

 LET baud=407 REM at 6,144 MHz for 2400 baud

 LET pin=2

 LET var="A"

 SEROUT rb,pin,baud,var

remarks:

You only can change the baud rate and the parity of the parameters of the serial transmission. At the SERIN software

routine the patity-bits 8E1 and 8O1 will be ignored.

8 data-bits, no parity, 1 stopp bit (8N1).

8 data-bits, eveb parity, 1 stopp bit (8E1).

8 data-bits, odd parity, 1 stopp bit (8O1).

7 data-bits, even parity, 1 stopp bit (7E1).

7 data-bits, odd parity, 1 stopp bit (7O1).

You can chose a bit rate up to 4800 baud at a xtal frequency of 4 Mhz, at higher frequencies corresponding more, at lower

corresponding less.

BASIC instruction set

 SERIN (cont.)

150

see: SETBAUD

 attention !!!

 What do you have to do when the parameter BAUD is a variable?

 Having a SERIN- and SEROUT-command, the parameters can be variables. PIN have to be a 8-bit-variable, BAUD a 16-

bit-variable. The parameter BAUD will be randomized in a delay-time which depends on the PIC-kernel, xtal frequency and

the baud rate.! It must be calculated before because it can't be done during the runtime. This value must be given to the

variable instead of the absolute baud rate. The compiler does it itself when the baud rate is given as a constant. The

supplied program BAUDCALC.EXE will do this for you.

 Interrupt operation:

 If you want to replace the interrupt routine with the help of the SERIN-command, of course you have to set the

corresponding interrupt-enable-bits, all ahead GIE and RCIE. At some PICs you have to set the PEIE-bit, because here the

UART-interrupts are merged with other interrupts to the "peripheral interrupt". See argument int

 If the SERIN command is not within the interrupt service routine (ISR) don't use argument int

 remarks: The data format for SERIN and SEROUT is fixed except the baud rate.

8 data bits, no parity, 1 stopp bit (8N1).

 At a xtal frequency of 4 MHz baud rates up to 9600 bps are realizable. If the frequency is less, only a lower baud rate may be

reached.

BASIC instruction set

 SEROUT

151

syntax: SEROUT port,pin,baud,var 1, var 2,...,var n

 SEROUT port,pin,baud,parity,var 1, var 2,... var_n

 function: sends data bytes serially out of a pin

 port (8 bit) io output port, variable or constant

 pin (8 bit) io output pin, variable or constant

 baud (300 - 9600) sends the data bytes with the defined baud rate, variable or constant

 parity EVEN, EVEN7, ODD oder ODD7

 var (8-Bit) variable or constant to be sent.

 description: The variables or constants are sent serially via port, pin with the defined baud rate.

example:

START:

 SERIN ra.0,4800,var_b REM reads a byte with 4800 bps

 LET VAR_b = var_b-1

 SEROUT rb.0,2400,var_b REM sends variable B with 2400 bps

 Remarks: The data format for SERIN and SEROUT is fixed except the baud rate.

8 data bits, no parity, 1 stopp bit (8N1).

8 Datenbits, even parity, 1 stopp bit (8E1).

8 Datenbits, odd parity, 1 stopp bit (8O1).

7 Datenbits, even parity, 1 stopp bit (7E1).

7 Datenbits, odd parity, 1 stopp bit (7O1).

 Baud rates up to 9600 bps are realizable at a xtal frequency of 4 MHz. If the frequency is less, only a lower baud rate may be

reached.

 see: SERBAUD

 attention !!!

 What do you have to do when the parameter BAUD is a variable?

 Having a SERIN- and SEROUT-command, the parameters can be variables. PIN have to be a 8-bit-variable, BAUD a 16-

bit-variable. The parameter BAUD will be randomized in a delay-time which depends on the PIC-kernel, xtal frequency and

the baud rate.! It must be calculated before because it can't be done during the runtime. This value must be given to the

variable instead of the absolute baud rate. The compiler does it itself when the baud rate is given as a constant. The

supplied program BAUDCALC.EXE will do this for you.

example:

 LET baud=329 REM at 6,144 MHz for 4800 baud

 LET baud=407 REM at 6,144 MHz for 2400 baud

 LET pin=2

 LET var="A"

 SEROUT rb,pin,baud,var

BASIC instruction set

 SET

152

syntax:

 SET var,bit

or

 SET port,pin

 function: sets the corresponding bit of a variable or port pin to one.

 var, port, pin must be byte variables or byte constants

 description: In contrast to the HIGH command SET will not change the tris register. Therefore it is useable within regular

variables.

 example:

START:

 SET var_A,0 REM bit 0 of variable A is set to one

BASIC instruction set

 SETBAUD

153

syntax: SETBAUD value

 function: Changes baud rate.

 baud (300 - 9600) fixes the baud rate (Konstante)

 description: This command is only necessary if the SERIN command is interrupt driven by the internal UART. This allows to

use different baud rate on the same seriell interface, e.g. at first a slower baud rate is selected and later a higher baud rate is

used. In a interrupt driven SERIN command the baud rate must be changed before the next byte is received.

 example:

START:

 SETBAUD 9600

 remarks: only at UART-operation !!!

BASIC instruction set

 SLEEP

154

syntax: SLEEP duration

 function: The cpu enters the SLEEP mode up to several seconds.

 duration (8/16-Bit) duration of the sleep mode in seconds, variable or constant

 description: The cpu enters the sleep mode for a specified time. During the sleep mode the power consumption is very low.

All functions are turned off except the watchdog timer. This timer interval is set to 2,3s. After this period the cpu wakes up and

checks if the total time is passed. If not, the cpu enters the sleep mode again. If the total time is over, program execution is

continued at the command which follows the SLEEP command. If you are using with command along with the PIC12C50x or

PIC16C5x a short puls occurs at each output pin because the cpu is woken up by a reset that changes all tris registers to

one's.

 example:

START:

 SLEEP 1565 REM sleeps for about one hour

 REM 3600 / 2.3 = 1565

 GOTO xyz REM program continues here after an hour

 remarks: duration is a value from 1 to 65535, therefore the sleeping time is 18h maximum with a resolution of about 2,3 s.

 SLEEP uses the watchdog-timer (must be active) and the prescaler. If CLOCK is active at the same time the

prescaler will be changed into the watchdog-timer.

 Important hint:

 All PICs with 12 bit core (PIC 12C5x and 16C5x) the SLEEP instruction should be placed in the first part of the program

(exactly within the first 256 assembler instructions).

BASIC instruction set

 SOUND

155

syntax: SOUND port,pin,frq,duration

 function: generates a frequency for the duration at port,pin

 port (8 bit) i/o port, variable or constant

 pin (8 bit) i/o pin, variable or constant

 frq (8/16-Bit) frequency in Hertz, must be a constant

 duration (8/16-Bit) duration of sound in milli seconds, must be a constant

 description: The SOUND command generates tones a the specified i/o pin

 example:

START:

 SOUND ra.0,10000,20 REM generates a tone for 20 ms with the frequency of 10kHz at pin RA.0

 GOTO START

 remarks: The SOUND command is optimized to 5kHz at 4Mhz xtal frequency. Applications with frequencies form 1000Hz to

10kHz. The error is about 6% (1kHz), 7% (10kHz)and less then 1% at 5kHz.

 See also LOFREQ

BASIC instruction set

 SWAP

156

syntax: SWAP var

 function: exchanges the upper and lower half byte (nibble) of the 8 bit variable var

 description: SWAP exchanges the upper and lower half byte of a 8 bit variable. This is useful for bcd arithmetics or bit

handling.

 example:

START:

 LET var_a=$6

 SWAP var_a REM after SWAP: A1=$60

BASIC instruction set

 TOGGLE

157

syntax: TOGGLE port,pin

 function: inverts the output signal at the specified pin

 port i/o port, variable (8 bit) or constant

 pin i/o pin, variable (8 bit) or constant

 description: The TOGGLE inverts the actual signal at output pin. The tris register is not changed.

 example:

START:

 LET var_a=6 REM address of port RB

 OUTP ra.0 REM pin 0 is output

 OUTPUT ra, 0 REM output level is low

 TOGGLE a1,0 REM output level is high

 TOGGLE var_a REM output level is low again

 remarks: With the TOGGLE command you can also invert bits in a regular variable because the tris register is not affected.

BASIC instruction set

 TRIS

158

syntax: TRIS port,value

 function: writes value into the tris register of the specified port (8 bit)

 port i/o port, variable (8 bit) or constant

 value direction of the signal path (1 becomes input; 0 becomes output), can be variable (8 bit) or constant

 description: The tris register which defines the mode of the i/o port (RA, RB, RC, RD, RE, GPIO) is loaded with the

value. Within value every bit is corresponding with an i/o pin e.g. bit 0 belongs to Rx0. If the bit is set to 1, the pin becomes an

input while set to 0 the pin becomes output.

 example:

 LET var_a=%00001111 REM bit RA0 to RA3 becomes input

 REM bit RA4 to RA7 becomes output

 LET var_b=5

 TRIS var_b,var_a

 remarks: TRIS is a byte command.

BASIC instruction set

 TXDDELAY

159

syntax: TXDDELAY const

 function: Pause a short time after each transmitted byte.

 const 8 bit constant (default = 125)

 describtion: In case of a slow data receiver this command slows down the byte transfer rate, not the baud rate which is the

bit transfer rate. A simple software delay routine is executed, while const is the repeatition value. At 4 MHz and 9600 baud a

value of 125 delays for about 500us which is good for the most applications.

example:

 TXDDELAY 255 REM max. delay time

START:

 SEROUT RC,6,9600,temp REM send TEMP twice with 1ms between each byte.

 remarks: TXDDELAY is necessary only if hardware usart is used. If a software routine is implemented or forced (define

serout=soft) it is slow enough.

BASIC instruction set

WAIT

160

syntax: WAIT msec

 function: delays program execution for a certain time

 msec (8/16-Bit) time to wait in ms, variable or constant

 description: WAIT delays the program for a certain time without entering the sleep mode. Therefore no reduction of power

consumption arrives. The accuracy of delay time depends on the kind of oscillator type (crystal, ceramic or rc).

 example:

START:

 WAIT 1000 REM waits for about 1 s without power saving

 . . .

 GOTO xyz REM after 1 sec program execution

REM continues hier

 remarks: The range of the delay time starts at 1ms and ends at 65,535s (the final value depends on the xtal frequency and

can be less then 65 sec because the 16 bit value is too small for longer times at higher frequencies.

BASIC instruction set

 WRITE

161

(o n l y 1 2 E 5 1 x , 1 2 E 6 7 x , 1 6 E 6 2 x , 1 6 X8 x , P I C1 6 F 8 7 x)

 syntax: WRITE addr,value

 function: writes a value into the additional eeprom

 addr (8-Bit) address where value is stored, variable or constant

 value (8-Bit) variable or constant, which is stored

 description: WRITE writes the contents of the variable var or the constant at address address into the eeprom. The size

of eeprom is upto 256 byte. Because the writing of a byte needs about 20 ms the program checks the corresponding flag

wether the writing is still going on or not. This check is done before the byte is written. In doing so program execution

continues after starting the write sequence. If you write or read bytes within interval greater then 20 ms, no additional delays

are caused by this command.

 example

 DEFINE ADR=$30 REM ADR to location 30H

 DEFINE VALUE=$31 REM VALUE

 DEFINE I1 = $31

START:

 FOR I1=0 TO 63 REM only 64 bytes

 LET ADR=I1 REM writes a value in each

 LET VALUE=I1*2 REM memory cell

 WRITE ADR,VALUE

 NEXT I1

 LET ADR=2 REM now read the third entry

 READ ADR,VALUE REM into VALUE (must be 4)

 remarks: using 12E51x, 12E67x, 16E62x, it must be garenteed that the time between two WRITE commands is at

least 10msec because they have the internal EEPROM as an independant I2C Die. Therefore the runtime-library can't check

the end of the writing cycle.

Assembler

ASSEMBLER (general)

162

Indroduction

The assembler iL_ASS16 translates the SRC file which is generated by the compiler iL_BAS16 into the OBJ file. Most of the

syntax is compatible to Microchips notation. Some special instructions outputed by iL_BAS16 will be translated into a

sequence of assembler instructions.

iL_ASS16 is also useable as a standalone application.

 Invoking the assembler iL_ASS16

Usually the assembler will be invoked by the assembler topic in the iL_EDy enviroment. When pressing the compiler button

the assembler will start automatically if no error is found by the compiler. Invoking iL_ASS16 out of the explorer an i/o-error is

the result because of a missing parameter (filename without extension).

The extention SRC is inserted by the assembler. The assemblers outputs a file with the extension OBJ. The default file

format is INTELHEX8 or INTELHEX16. This format is recognized and loaded automatically by the corresponding simulator.

The source code inclusive commend and OP-code is deposit in the LST-file. In case of error the output of the message takes

place at the screen as well as at the ERR file. OBJ-, SYM- and LST then will not be created. Additionally a DEBUG file will be

created when the assembler will be started directly after a compiling operation with the BASIC compiler iL_BAS16. With this

the simulater iL_SIM16 will be able later on to run the BASIC source code step by step.

 INTELHEX16 is selected when compiler switch /M_OBJ is on or with the help of the $LIST command.

Assembler

Assembler directives

163

Assembler instructions

The label has to start in the first column of the line, at least one leading blank is

 necessary for the instruction. Comments are marked by a colon (;)

Commands:

Some instructions are not for the assembled program but for the assembler itself. These instructions are called directives.

The shareware version doesn't support the DEVICE-instruction. Therefore in this version the default line will be chosen

automatically.

 DEVICE 16C83,XT_OSC,WDT_OFF,PROJECT_OFF

The format of an assembler line is:

 label instruction argument ;comment

 a) label

 The label must begin at the first place of the line. Is there no label before a commend you need at least one blank before the

command. Commets will be introduced by a semicolon (;).

attention !

 If there is only a symbol or a label in a line the actual program counter reading will be allocated to this value. An error

message doesn't appears.

example:

 ORG 15h

COUNT

Value 15h will be allocated to the symbol COUNT. Therefore you only should use this notation in jump labels. Symbols must

be defined in the same line with EQU.

 b) command

 Beside the actually mnemonic commands of the program the assembler also knows further commands. These commands

shall influence the sequence of the assembling operation. You can find the commands in chapter 4. The assembler

instructions are:

 ORG nnn

 The following code assembled by iL_ASS16 ist stored at the address nnn

 EQU symbolname value

iL_ASS16 replaces the symbolname by value, for example:

BAUD EQU 10h

 LIST INHX8 or INHX16

iL_ASS16 produces a OBJ file in Intel-Hex-8 format or Intel-Hex-16 format. The extension is always .OBJ

 LIST /M_OBJ

The produced obj file can be loaded into microchips picstart programer.

Assembler

Assembler directives (cont.)

164

LIST C=xxx

 Fixes the line width in the LST-file. Pay attention that the assembler adds 18 columns at the left side. There you can find the

line numbers of the source file, may be marked with an "I". In case the INCLUDE-file is read you will find the address of the

codes and the opcode itself. Only after that the symbol column anf the rest will follow.

 LIST BIN

 LIST BINX

An additional file in binary format with the extension BIN will be produced. This file only includes the dates for the program

code. It doesn't give any information about the type of module or the bits of the configuration areas. The file area is missing at

the 16X8x module. The switch BIN places the dates in the following manner highbyte - lowbyte in the binary-file.

BINX exchanges low and high byte. All arguments can be listed, seperated by colons.

 LIST OBJ2HEX

Creates the ending HEX instead og OBJ. A lot of programming tools need the ending HEX.

 Different LIST-instructions can be seperated in the same line by commas. (In basic-syntax the command is $LIST).

 IF condition

 ELSEIF

 ENDIF

 If condition is true (=0) the following lines up to ELSEIF or ENDIF will be assembled. If condition is not true (=1) all lines

between IF and ELSEIF will be ignored, the lines between ELSEIF end ENDIF will be assembled. IF clauses may not be

nested.

 IDENT nnnn

 The digits nnnn are stored into the id area of the controller (not available with picstart).

OLDVAR

The elder assembler versions predefined some symbols, f.g. INDIRECT, RTCC, This function is dropped with version 5.0.

If you want to use these predefined symbols you have to set the assembler switch OLDVAR. Otherwise the user has to

define these symbols again. (In basic syntax the switch ist $OLDVAR).

 DEVICE

Defines the type of controller e.g.

12C508 12C509 12E518 12E519 12F629 12C671 12C672 12F675 16C53 16C54 16C55 16C56

16C57 16C58 16C61 16C62 16C63 16C64 16C65 16C66 16C620 16C621 16C622 16E623 16E624

16E625 16C71 16C72 16C73 16C74 16C76 16C77 16F818 16F819 16C83 16C84 16F83 16F84

16F873 16F874 16F876 16F877

(This list increases permamently!)

You can also write e.g. PIC16C84 instead 16C84

In case of A-type PICs add suffix A to device name e.g. 16C65A.

The oscillator type is selected by

 LP_OSC oscillator typ LOW POWER

XT_OSC " xtal or resonator

HS_OSC " HIGH SPEED

RC_OSC " RC circuit

Assembler

Assembler directives (cont.)

165

IRC_OSC " internal RC (12Cxxx, etc)

ERC_OSC " external RC (12Cxxx, etc)

WDT_ON watchdog on

WDT_OFF watchdog off

PROTECT_ON code protection on (no readout of program memory)

PROTECT_OFF code protection off (program memory can be read out)

PWRTE_ON power up timer on (not every PIC)

PWRTE_OFF power up timer off (not every PIC)

MCLR_INT internal reset generation (12Cxxx, etc)

MCLR_EXT reset circuit is connect to pin MCLR (12Cxxx, etc)

 INCLUDE filename.ext

With the help of the INCULDE-files you can write definite program modules, e.g. definition of symbols, in a separate file. They

will be read during assemblation and handled as if they stand directely in the main-file. So you can relieve the main file and

get more clearness. Include files are not allowed to have include devices for their own. The INCLUDE-file will be marked in

the LST file. Because INCLUDE is a command it isn't allowed to take the position of a label!

(In the BASIC-source text $INCLUDE is used).

 c) arguments

 In addition to decimal-, hex- and binary-format you also can use ASCII characters which must be enclosed by apostrophe (').

You can enter numbers in decimal format, hexadecimal format by adding the suffix H and

binary format with a suffix B. A ascii character is set in quotes.

e.g.

 10 64H 01100101B 'A'

 dec. hex binary ascii 65 (41H)

You also can calculate arguments but only one calculation respectively algebraic signs can be done. No blanks are allowed.

Between a sign and the argument no blank is accepted.

write: VAR1+VAR2

 VAR1 + VAR2

 VAR1+ VAR2

 VAR1 +VAR2

wrong: VAR1 + VAR2

 !VAR1 + VAR2 (=two operators)

 !VAR1

Available operators are:

+ addition or sign

-- subtraction or sign

* multplication

/ division

& logical AND

| logical OR

Assembler

Assembler directives (cont.)

166

^ logical EXCLUSIVE-OR

<< shift left (var1 << 4)

>> shift right. .(var1 >> 2)

! negate

$ $ is replaced by the actual value of program counter ($+3)

If the result is higher than 255 (-128, +127) a error message is generated, execpt: CALL, GOTO, ORG und EQU.

The assembler knows some predefined symbols when OLDVAR is set.

INDIRECT for file 0 (register for indirecte adressing)

RTCC for file 1 (real time clock/counter)

PC for file 2 (programmcounter)

STATUS for file 3 (statusregister, flags)

FSR for file 4 (file select register)

RA for file 5 (port A)

RB for file 6 (port B)

RC for file 7 (port C), if 16C55 or 16C57

TRUE 0

FALSE 1

In addition with the statusregister the following symbols are defined:

C Carry /Borrow

Z Zero

DC DigitCarry /Borrow

PD Power Down

TO Time Out

PA0 Page Preselect Bit 0 (16C5x)

PA1 Page Preselect Bit 1 (16C5x)

PA2 Page Preselect Bit 2 (16C5x)

RP0 Register Page Select direct (16C71, 16C84)

RP1 Register Page Select direct (16C71, 16C84)

IRP Register Page Select indirect (16C71, 16C84)

Attention !

The shareware-version does not know the device instruction so the default values take place.

e.g. DEVICE 16C83,XT_OSC,WDT_OFF,PROJECT_OFF

Assembler

PIC assembler basic instruction set

167

ADDWF f,d INCF f,d TRIS f

ANDLW k INCFSZ f,d XORLW k

ANDWF f,d IORLW k XORWF f,d

 BCF f,b IORWF f,d

BSF f,b MOVF f,d

BTFSC f,b MOVLW k ADDLW k

BTFSS f,b MOVWF f RETFIE

CALL k NOP RETURN

CLRF f OPTION SUBLW k

 CLRW RETLW k

 CLRWDT RLF f,d

 COMF f,d RRF f,d

DECF f,d SLEEP

 DECFSZ f,d SUBWF f,d

 GOTO k SWAPF f,d

Hint: f=file register, d=dest. (W or 0 ->result to w; 1=result to f). Default of d is 1

ADDWF f,d change Z,C,DC

Add W and f. result to W, if d=0, else in f

ANDLW k change Z

logical AND of W and k, result to W

ANDWF f,d change Z

logical AND of W and f, result to W, if d=0, else in f

BCF f,b change -

clears bit b in file register f

BSF f,b change -

set bit b in file register f

 BTFSC f,b change -

test bit b in file register f, skip next instruction if bit=0

BTFSS f,b change -

test bit b in file register f, skip next instruction if bit=1

CALL k change -

call subroutine on address k. Return address is put on top of stack. PIC16C5x have a two level stack and the destination

address must be within 0 ... FFH on each page. All other PIC (16C71 and 16C84) have a eight level deep stack and no

restriction in the destination address of the subroutines.

CLRF f,d change Z

clears file register f

CLRW change Z

clears W

Assembler

PIC assembler basic instruction set (cont.)

168

CLRWDT change TO=PD=1

resets watchdog timer

COMF f,d change Z

calculate one's complement from file register f. Result to W, if d=0, else in f

DECF f,d change Z

decrements file register f, result to W, if d=0, else in f

DECFSZ f,d change -

decrements file register f, skip next instruction if result is 0. Result is stored in W, if d=0 else in f

GOTO k change -

Branch to address k. At 12C5xx and 16C5x k is only 9 bit wide and accesses a range from 0 to 1FFH. To get to other

program pages it is necessary to set PA0, PA1 and PA2 in the status register accordinly. All other PICs have a page size of

2048 (0..7FFH). To get to other program pages the pclath register must set accordingly.

INCF f,d change Z

Increment the contents of file registers f. Result to W if d=0, else in f

INCFSZ f,d change -

Increment file registers f. Skip next instruction if result i 0. Result to W, if d=0

IORLW k change Z

Logical OR of W and k

IORWF f,d change Z

Logical OR of W and file register f. Result to W, if d=0

MOVF f,d change Z

Move contents of f to itself or to W (allows setting zero flag if result is 0)

MOVLW k change -

Move literal (constant) k to W

MOVWF f change -

Move W to file register f

NOP change -

No operation

OPTION change -

Move W to option register

RETLW k change -

Returns from subroutine. Literal k is loaded into W (e.g. for tables)

RLF f,d change C

Rotate file register to left througth carry. Result is in W, if d=0 else in f-register

RRF f,d change C

Rotate file register to right througth carry. Result to W if d=0 else in f-register

Assembler

PIC assembler basic instruction set (cont.)

169

SLEEP change PD=0, TO=1

Reduces power consumption. Nearly every function is stopped. To stop sleep mode reset is needed for 12C5x and 16C5x.

Other PICs (16C6x, 16C7x and 16C8x) can use an interrupt to end sleep mode.

SUBWF f,d change Z,C,DC

Subtract W from f. Result to W if d=0, else to f-register.

ATTENTION! Carry is handled as borrow bit (it is inverted to the general opinion)

SWAP f,d change -

Swaps the two nibbles of the contents in file register f. Result is in W if d=0

TRIS f change -

W is moved to the tris register to defines the port pins a inputs or outputs

XORLW k change Z

Logical EXCLUSIVE OR of W and k.

XORWF f,d change Z

Logical EXCLUSIVE OR of W and file reg. f. Result to W if d=0

PICs with 14 bit cores has four additional instructions:

 ADDLW k change C,DC,Z

add literal to W

 RETFIE change -

 Return from interrupt, set gie flag

RETURN change -

Return from subroutine without changing W register

 SUBLW k change C,DC,Z

Subtract W from literal

In all 14 bit core PICs the option and tris register are placed within the regular register set. For downward compatibility the

instructions option and tris are still available but should not be used.

ATTENTION!!

Don't confuse with the BASIC instruction TRIS.

The subtract instruction set and reset the carry flag not as you usually think. It is a borrow bit. The reason is how the

subtraction is done by the processor. The PIC makes a addition with the two's complement. This is:

CLRF 10 f10=0

MOVLW 1 w=1

SUBWF 10 f10=0-1=0+FF=FF result is negative, but C=0

or

MOVLW 0FFh

MOVWF 10 f10=FF

CLRW w=0

SUBWF 10 f10=FF-0 = FF result is positive, but C=1

Simulator

Simulator (general)

170

1. Introduction

Important!!!

There is a important difference between iL_SIM16STD and iL_SIM16PRO. iL_SIM16PRO supports the same devices as

iL_BAS16PRO does. iL_SIM16STD supports only a part of them, that means every PIC as iL_BAS16STD does. the standard

version can't simulate a program which has several memory pages. Which one is supported by which version is noted in

appendix III.

IL_SIM is a tool to simulate all functions of Microchips microcontrollers. The standard version supports PIC12C508,

PIC16C54, PIC16C55, PIC16C64, PIC16C71, PIC16C84 and PIC16F84 (actual list see www.iL-online.de). The

professional version supports also these devices with more program memory, where calls und jumps over program pages are

necessary. Both programs run under DOS in protected mode (386 or higher). For easy handling, the contents of all registers

and parts are displayed on screen. This is the simulators screen. An available additional hardware (iL_VIEW16 or

iL_HARD16) permits a connection of the simulator to the hardware!

The first line shows the number and date of release, controller type, contents of the configuration byte, like the type of

oscillator (RC, HS, LP, XT, IRC, ERC), watchdog on or off (WDT_ON, WDT_OFF) and the status of the protection bit

(PROTECT_ON, PROTECT_OFF). In the first column the program counter '>' (=PC) points to the next code to be execute.

The lower 8 bits are found also in register F02, the upper bits in the status register as PA0 to PA2 (12Cxxx and 16C5x) or in

the register PCLATH (12C6xx, 16C6x, 16C7x, 16X8x). Usually the focus of the disassembler listing is the PC and will keep

visable execpt if you are modifying the program by hand. The second column the opcode, followed by the labels (symbols)

and the mnemonics.

iL_SIM16 Ver. 5.2 29.04.96 16C54 XT-OSC WDT-OFF PROTECT-OFF (c)iL

===

 >0000 000 START NOP W-REG. : 0 0 0 0 0 0 0 0 00

 0001 030 MOVWF 10 S-REG. : 0 0 0 1t1p0z0d0c

 0002 040 CLRW PgSel. : 00 RTCC: 00 WD: --

 0003 071 CLRF 11 PC :1FF FSR: 00

 0004 0B3 SUBWF 12 Option : - - 1 1 1 1 1 1

 0005 092 SUBWF 12,W >Port A : 0i0i0i0i

 0006 0F3 DECF 13 PORT B : 0i0i0i0i0i0i0i0i

 0007 0D3 DECF 13,W Port C : 0i0i0i0i0i0i0i0i

 0008 134 IORWF 14 F00: 00 F0B: 00 F16: 00

 0009 114 IORWF 14,W F01: 00 F0C: 00 F17: 00

 000A 175 ANDWF 15 F02:1FF F0D: 00 F18: 00

 000B 155 ANDWF 15,W F03: 18 F0E: 00 F19: 00

 000C 1B6 XORWF 16 F04: 00 F0F: 00 F1A: 00

 000D 196 XORWF 16,W F05: 00 F10: 00 F1B: 00

 000E 1F7 ADDWF 17 F06: 00 F11: 00 F1C: 00

 000F 1D7 ADDWF 17,W F07: 00 F12: 00 F1D: 00

 0010 238 MOVF 18 F08: 00 F13: 00 F1E: 00

 0011 218 MOVF 18,W F09: 00 F14: 00 F1F: 00

 0012 279 COMF 19 F0A: 00 F15: 00

Quarz: 4.194304 MHz Laufzeit: 0.000us RTCC-Pin 0 Stop 0,0V

 ?

==

F1-Help F2-Rset F3-RgSel+ F4-RegMod F5-PortSel F6-WMod F7-SMod F8-Trace F9-Setp

ALT F2-Load F3-PicSel F4-PrgMod F5-OMod F6-LRst F7-Pattrn F8-PtOnOf F9-Go

Simulator

Simulator (general) (cont.)

171

CTRL F2-ExRes F3-RgSel- F4-DiSig F5-RtccTg F6-ASig F7-ATrg F8-IgCmd F9-Step-

 SHIFT F3-Brkpt F4-Bank F5-Value F6-BStr F7-BsOnOf F8-HxAsc F9-Go-

The functions of the different areas of the screen are:

In the headline there are the program name, number of version, the date, the at the moment active type of processor, also

the information about the configuration-byte in the processor. It is shown the type of oscillator(RC,HS,LP,XT, IRC,ERC), the

state of the watchdog timer (WDT_ON, WDT_OFF) and the readout protection (PROTECT_ON, PROTECT_OFF).

The right half of the screen shows the registers and their values. To change the value just click the desired register and

overwrite the old value. The bits in the status register are marked: t means time out flag, p is power down flag, z is the zero

flag, d is the digit carry flag (often called half carry) and c means carry flag. The upper three bits are not marked because

their meaning is different and depends on the controller type. Their meaning depends either on the program counter (PA0 to

PA2) or is used to select the ram bank RP0 and RP1 or for indirect memory access IRP.

The value of file register F01 can be incremented by a slope on the rtcc pin. The prescaler is shared by the rtcc and the

watchdog timer. A change on the fly is possible e.g. during normal operation it is used along with the rtcc and before the chip

is set in sleep mode (power down) you assign it to the watchdog to get longer reset intervals. The assignment and the

prescaler factor is set in the OPTION register. If the rtcc counts from 255 to 0 (overflow) the timeout flag is set, and if in sleep

mode the contoller is waked up.

Because of the compact command words (harvard architecture) the arguments in such a command word are limited. This

means that there is no linear access to the file registers (data memory). So this memory is devided in seperate banks. The

size of such a bank depends on the type of controller. PIC12C5xx and PIC16C5x have just 12 bits in a command word so the

memory bank is only 32 bytes (00H to 1FH). Because the lower 16 Bytes are very very importend, this part will not be

switched away, so if you have select the second page (Bit 5 in FSR is '1') and you read the contents of file register 1, you get

the value of the rtcc. This means you select memory blocks from 10H to 1FH, 30H to 3FH, 50H to 5FH and 70H to 7FH, if

available in this chip. Another way is used with the contoller types PIC12C6xx, PIC16C6x, PIC16C7x and PIC16XFx. These

types of contoller use 14 bits in a command word. The bits to select the bank are not in the FSR register but in the status

register. This is really complex so please refer microchips data sheets.

All type of pic controllers have a hardware stack. A stack is a memory (other cpu's uses regular data memory) in which the

contoller writes very importent values. PICs use the stack for keeping the return adresses of a subroutine. The user cannot

access this part of memory in the PIC. Take care, in the PIC12C5xx and PIC16C5x the stack is only two levels deep. A CALL

in a CALL is ok but a CALL in a CALL in a CALL is too much an ends in program confusion. All other PICs have an eight

level deep stack, what a waste, but anyway it must be enough.

Most of the hardware configuration is done by writing the OPTION register. The lower three bits defines the prescaler factor.

Take care it is different if assigned to the rtcc or the watchdog. Bit 3 is the prescaler assignment, bit 4 selects the slope on

which the rtcc will be incremented (bit 3 and bit 5 must be 0), bit 5 select the trigger source for the rtcc or prescaler. The

meaning of the upper two bits depends on the controller type.

Simulator

Simulator (general) (cont.)

172

The ports are shown in binary format. Each bit is marked as 'i' for input, 'o' for output, 's' for signal source (square wave) and

'd' for data source (TTL level of a RS232 input). Along with the PIC12C67x and PIC16C7x there are also an 'a' for analogue

input and a 'r' for reference input. 'i' and 'o' are defined in the TRIS register where a '0' correspondens to an output, a '1' is

input. On reset all pins are defined as inputs (remember if you wake up a PIC form sleep). 'a' and 'r' are defined in the

register ADCON0 and ADCON1. 's' and 'd' are functions or the simulator for easy pin stimulus. In the function data source

handshake is also available. But the assigned pin for this function is not marked because it is an ordinary pin which must be

polled by software. Another function of this simulator is the analogue signal at the rtcc pin. This is a 'quasi' analogue signal

because the rtcc pin is just a schmitt trigger input. So it is enough to define a rising slope, the time of remaing high and the

falling slope. The time of remaining low is the rest to 100%. You may define the frequency and the hysteresis on the rtcc pin.

Once started it runs until stopped. No synchronization is done between the slopes and the running program.

All timing , including the signal sources and runtime counter, is calulated on base of the actual xtal frequency. This value is

setable between 1Hz and 20Mhz. For accessing the eeprom data space in PIC16X8x you must run through the procedure

described in the data sheet. These datas are stored and loaded by the simulator in EEPROM.DAT.

The analogue signal sources (max 8) stored in ANALOG.DAT.

Simulator

Getting started

173

Please copy all files on the disks root directory on your harddisk after having created a new directory (e.g. PICTOOLS). If you

have bought the basic compiler iL_BAS16 too, copy the files of that disk into the same directory. On DOS-prompt type in

il_SIM16 or il_SIM16 filename. Entering the optional filename the appropriate file will be loaded immediately after il_SIM16 is

started. Do not type in the file extension because it is added automatically. The assumed extension is LST for the listfile.

Other parameters are

/comx,

/Q=1.5,

/P=stimulusfile.sti

/T=iotracefile.trc

/L=500

/E.

 comx is a number from 0 to 4. It defines the com port where iL_VIEW16 (hardware in circuit simulator) is attatched. /0

means no iL_VIEW16 is used.

 /Q= defines the xtal frequency

 /P= invokes the pattern file (stimulus data)

 /T= while simulation runs the changes at the io pins are recorded in this file (e.g. for documentation)

 /L= defines the end time on which the simulator automatically stops

 /E= after stopping the simulation, the program exit and return to the caller.

 /B= nnn after nnn us the data source (serial) starts.

This parameter are very useful for batch files.

After program exit, the pic type, com port and colors are saved in iL_SIM16.CFG. Upon starting, this values are used if no

parameters are set (parameter have higher priority). iL_SIM16.CFG is a ascii file with the first line for the com port (0 to 4),

the second is 'm' for monochorme display and 'c' for color display. The third line contains the latest used pic type. The

following lines are the colors for the screen. The values are adequate to those of BORLANDs PASCAL compiler.

Line color for default

4 back ground 3

5 regular text 15 (white)

6 head line 1

7 foot line 1

8 messages/inputs 4

9 assembler lines 5

10 register 5

11 window 1

For easier working you may use the editor ED16X. Now you can write your source program and assemble or compile it with

just tying ALT F1 (assembler) or ALT F4 (compiler). To invoke the simulator you've to press ALT F2.

Quit the program

After pressing ESC you are asked if you really want to quit. Press 'Y' to exit the program.

Simulator

Simulator commands

174

All commands will be invoked by pressing the appropriate F-Key. On the screen bottom line you can see the commands that

are supported. There are another three command levels which you switched by pressing permanently the ALT-,CTRL- or

SHIFT_key. Click the bottom line with the right mouse key and the commands will be scrolled. Click on the appropriate

function with the left mouse key starts this function. The middle mouse key is used like the ESC key.

F1-Help.

Invokes the help-screen with its 11 pages to turn over the page-up and page-down key. To quit the Help-screen press ESC.

To turn over by using the mouse position the cursor at the arrows in the frame of the auxiliary window and press the left

mouse button.

F2-Rset.

Reset the CPU like on power on. The program counter is set to the highest available value (all one's) if the selected

controller is PIC12C5xx or PIC16C5x, with all other PIC controllers the program counter is set to zero. The i/o-pins are

defined as inputs. The selected ram bank is the first, etc (see also CTRL-F2).

F3-Rg-Sel+.

Move the file pointer to the next position. Only the marked register file can be changed. Using mouse control, it will do when

you position the mouse at the corresponding register and press the left mouse button. So the pointer is set at this position.

Clicking at this position for a second time you active automatically the function F4 and you can change the contents of this

register.

Hint: See also F4 and CTRL F3.

F4-RegMod.

A new value can be written in the marked file. You have to input in Hex-format.

Hint: See also F3 and CTRL F3.

F5-PortSet.

Moves the port pointer to the next position. Only the pointed port can be changed. You toggle the bits 0-7 by pressing the

appropriate key 0-7. Mouse click toggles the pin.

 F6-WMod.

Allows you to change the W-register.

F7-SMod.

Allows you to change one of the bits in the statusregister. The entry is e.g. Z=1 to set the zeroflag or C=0 to reset the

carryflag. The abbrivations for the flags are:

C = carrybit

D = digitcarry

Z = zerobit

P = powerdown

 T = time out

The page-select-bitsPA0-PA2 or register-page-bits RP0, RP1 and IR don't have a lable (identification) but they are

changable.

Having a mouse you just have to put it at the desired bit and press the left mouse button. The bit will be inverted at that.

F8-Trace.

The command pointed by the program counter is simulated and then the display is updated.

F9-Step.

Simulator

Simulator commands (cont.)

175

A temporary breakpoint is set to the next command and the command pointed by the program counter is simulated; useful for

GOTO's and CALL's.

ALT F2-Load.

After enter the filename (without extension) the file will be loaded and a reset is executed. ALT F2 without filename reloads

the current file.

ALT F3-CpuSel.

Change the Processor (not available in the Shareware-version where only the 16C54 is supported). Using mouse control you

can change the type by positioning the mouse at the shown prozessor in the top line and press the left mouse button.

ALT F4-PrgMod.

You are asked to type in the appropriate address. Now you are able to change the code (Entry in hex format). You quit this

function by pressing the ENTER key only. Using hte mouse just set the mouse cursor at the corresponding command and

press the left mouse button.

ALT F5-O-Mod

The bits of the option register are listed and may be toggled by typing the bit numer (0 to 7) or just click it on.

Allows you to change part of the option register.

PSX = 0 ... 7 Value for the prescaler

PSA = 0.... 1 prescale to 0=rtcc 1=wdt

RTE = 0 ... 1...rtcc triggerslope 0=riging edge 1= falling edge

RTS = 0 ... 1 ..rtcc-clock from 0= intern 1= rtcc-pin.

ALT F6-LRst.

Resets the runtime counter to 0us. the runtime is indicated in us (10E-6) with a resolution of 1 ns. Using a 4,194304 MHz-

quartz the cycle-time runs by this at 954 ns.

ALT F7-Pattern

Opens a window for entering end editing the pattern file. You may input up to 500 times and the io levels to set at this time.

The first line is the enable line which means that only those pins will be changed whose corresponding bit is set to '1' (input). If

this bit is set to '0' (output) the output driver is stronger than the input form the pattern file. The following lines contains the

time (in us) when the new io information should be set to the pin and the level that is set to the pins. MCLR input in internally

stored as RA5.

ALT F8-PtOnOf.

 Starts and stops the work of the pattern file.

ALT F9-Go.

Starts a continuous simulation. To stop the simulation press ESC. Several keys are still scanned. Key 0-7 toggles the

appropriate bit in the selected part, F5, CTRL-F5, Shift-F6 and Shift-F7 can still be used. so that the running program meets

different conditions on the i/o-pins and the rtcc-pin.

 CTRL F2-ExRes

 Corresponds to manual reset along with an enclosed operating voltage. The bits TO and WD in the status register are set

accordingly. So you can differ a manuel reset, which ends the sleep mode, from a switch-on of the operating voltage.

CTRL F2-AnaIn (only 12X67x 16X7x and 1687x)

Simulator

Simulator commands (cont.)

176

You define the maximum level and the frequency of an analogue signal for a desired analogue i/o pin. If the frequency is

higher than 0Hz you may define the signal shape. Some shapes are predefined but you may also define one by your own. In

this case you have to input up to 64 points which were spreaded linear by 4 points.

CTRL F3-RgSel-.

Moves the register file pointer to the previous position.

HInt: See also F3 and F4.

CTRL F4-DiSig.

Allows you to "connect" a squarewave generator to any i/o-pin. The frequency is selectable from 1Hz to 100kHz in steps of

1Hz. The duty cycle can also be changed. E.g. to connect this generator with 10kHz, duty-cycle 1:4 to pin RA 3 please type in:

RA3 (---means disconnect)

10.000 (Entry in thousands of Hz)

1:5 (High-phase, low-phase)

CTRL F5-RtccTg.

Toggles the information on the RTCC pin. This can influence the rtcc register and/or the prescales if assigned to rtcc.

CTRL F6-AnSig.

An analogue source can "connect" to the RTCC pin. The frequency can also be set between 1Hz and 100kHz. The

waveform is trapezoid with variable rising ramp, high peri-ode, falling rampramp and low periode. The timing is entered in

percentage with the total period (1+2+3+4) is 100%. There are only 3 values to enter, the forth value is the rest missing to

100%. Typical values are:

Triangle (sqm) 50,0 ; 50,0.

Square wave (1:1) 0,50 ; 0,50

Sinus (1.Nährung) 30,40,30,0

" " 15,20,15,50

 ---------_________

 /

 /

 / -------------

 | 1| 2 | 3| 4 |

 The threshold of the rtcc-pin and the hysteresis are not fixed.The analogue source can be triggered. Manualtrigger by CTRL-

F7 or by the logic level of an i/o pin. This trigger source can be any i/o pin, the polarity is selectable, too. As long as the

triggered condition is true the generator starts with a new period after finish the old one (free running function generator).

Becomes the trigger condition false within an actual period, this period will be finished before the generator is stopped.

CTRL F7-AnTrig.

The function generator is enabled for one period. If once enabled at least one periode is send out. Is the trigger still enable,

free running mode is enabled.

CTRL F8-IgCmd.

The command pointed by the program counter will be ignored. Has the same result as setting the program counter to the

next address.Having a mouse it is set to the desired adress in the adress column and press the right mouse button.

CTRL F9-Step.

The same function as F9 except that there is no screen refresh and therefore the program runs quite faster.

Shift F3-Brkpt.

Simulator

Simulator commands (cont.)

177

Allows you to define a breakpoint to a certain address. This breakpoint is only effective with Go (F9 or Shift F9). To clear the

breakpoint enter '-' instead of the address.

Shift F4-Bank.

If the type 16C57 is active you can select the available banks.

Shift F5-Value

Five function must be select by pressing key 1 to 5.

1 Enter a new xtal frequency in Mhz.

2. Define the upper und lower threshold of the rtcc pin

3. Turn the watchdog on or off.

4. If iL_VIEW16 is attatched and aktive, only the simulator reads and writes this hardware. If your program has less io

transfers, the changing at your hardware is not visable on screen. This value defines the numbers of codes that are

executed before the simulator is forced to read the io pins. A good value is 100.

5. If the simulator runs in the fastest mode, no screen refresh is done (it cost the majority of time). This value defines the

numbers of codes that are execueted before the simulator is forced to refresh the screen.

 ClkSel

Here you can put in another quartz fequency. The cycle time will be adapted correspondently.

 RtccHyst.

 It permits to set the lower or upper threshold at the Rtcc-pin. Default value is 0.8V and 4.3V, which corresponds

approximately to the data sheet. Is thevalue of the input 0 first the rated voltage must go up to 4.3V, that an "1" can be

recognized. Corrspondingling the rated voltage must sink to 0.8V to recognize a "0".

 WDtog

Switch on respectively switch off of the watchdogtimer. Using a mouse you can change the watchdogtimer by setting the

mouse at the shown prosessor at the upper line and press the left mouse button.

 I/O-access

This function just becomes relevant when the haredware adapter iL_VIEW16 or iL_HARD16 are connected and activ. You

can tell the simulater after howmany commands it has to read in the state of the adapter. You can put in values beteween 1

and 32000. The value 100 it a good compromise.

 Compulsory refresh

Usually you have no refreshment of the screen in a SHIFT F10 GO-mode. Here you can determine, that the screen contents

will be updated after 100 done coomands.

SHIFT F6-BStr.

Allows you to 'attatch' a data stream to an input pin. This serial data stream is defined by the baud rate, parity, numbers of

bits ant CTS pin for handshake. The text string is limited to 16 characters. Characters below 20H (blank) must be entered as a

hexadecimal digit with a leading '#' character. The appropriate pin is marked by a 'd'.

Shift F7-BsOnOff

 Starts the data stream with sending the bits to the selected pin (under respect of RTS, if defined, 1=stop).

SHIFT F8-HxAsc

The appearence of the registers are switched over to ascii or back to hexadecimal.

Shift F9-GO

 Invokes the simulation without screen refresh. The simulation is stopped by a breakpoint or ESC-key. The screen is

refreshed anyway, if any external states are changing.

Simulator

Simulator commands (cont.)

178

SHIFT F10-Go--

In this mode the simulator runs on its maximum speed because any screen refresh is suppressed. Only after a specified

numbers of cycles a single refresh is done.

To reset the analogue and digital signal generator press CTRL-F10 or ALT-F10. Now the periode starts at the first point.

RUN UNTIL

 This function can invoked by mouse click only. Set mouse pointer to the first coloumn of the address coloumn and press left

mouse button. A temporary brakpoint is set and the simulation starts with maximum speed. The program is simulated until it

reaches the breakpoint. If a breakpoint was already set at this address the breakpoint will be first reset before simulation

starts.

BASIC high level debugging

To simulate BASIC programs the simulator needs the LST file generated by iL_BAS16 and iL_ASS16. After loading the

simulator and the LST file the assembler code is visible first. Press F10 to switch to the BASIC lines.

For testing BASIC programs you can use following commands:

TRACE (F8)

The highlighted BASIC line is executed.

 STEP (F9)

A temporary breakpoint is set on the line which follows the highlighted line. Then simulation starts with maximum speed. This

command is useful to "execute" subroutines fast.

 IGNORE-CMD (CTRL-F8)

The highlighted BASIC line is not executed but skipped.

GO (SHIFT-F9)

Starts the Simulation at the highlighted BASIC line and executes line by line.

Utility

BaudCalc

179

BaudCalc is a utility program to calculate the delay constants for SERIN and SEROUT. Normaly you set the baud rate in

these two instructions as a constant e.g. 1200 or 4800. But sometimes it is very interessting to change the baud rate without

using two separate instructions. This can be necessary when you have to compress your program to fit in a smaller PIC. For

this the parameter baud rate must be a variable. But the real value that is used by the runtime library isn't that value. The

compiler calculates the value under respect of the xtal frequency, the used core and the baud rate value. There is no linear

proportion which makes ist difficult to calculate. For a PC and the compiler itself it is no problem. But to calculate this value

within the runtime library would take to much memory space and time. So it is quiet better to keep this calculation out ouf the

PIC. This is done by BaudCalc. Enter the desired baud rate, the used core (depends on which PIC) and the xtal frequency of

the target hardware. Then press 'CALCULATION' and the value that results in the desired baud rate will be displayed.

LET var_baud=205 'baud rate value is a variable

SERIN rb,0,var_baud,var_get

Appendix I

 DEFAULT.EQU

180

;Stand (Release) (ddmmyy) 22.07.2003

;--

;--

:12C508

:12C509

:12E518

 :12E519

INDIRECT EQU 00h DC EQU 1 ARG3 EQU 0Eh

TMR0 EQU 01h C EQU 0 ARG4 EQU 10h

RTCC EQU 01h FSR EQU 04h ARG5 EQU 12h

PCL EQU 02h OSCCAL_ EQU 05h ERRVAR EQU 13h

PC EQU 02h RB EQU 06h ERR_ EQU 13h

STATUS EQU 03h GPIO EQU 06h DATPTR_ EQU 14h

GPWUF EQU 7 GP_ EQU 06h RBTRIS_ EQU 16h

PA0 EQU 5 ERG EQU 08h :

TO EQU 4 ARG0 EQU 08h

PD EQU 3 ARG1 EQU 0Ah

Z EQU 2 ARG2 EQU 0Ch

;--

:12C671

:12C672

:12E673

 :12E674

INDIRECT EQU 00h INTF EQU 0BH,1 PCON EQU 8Eh

TMR0 EQU 01h GPIF EQU 0BH,0 POR EQU 8Eh,1

RTCC EQU 01h PIR1 EQU 0CH OSCCAL_ EQU 8Fh

PCL EQU 02h ADIF EQU 0Ch,6 ADCON1 EQU 9Fh

PC EQU 02h ADRES EQU 1Eh PCFG2 EQU 9Fh,2

STATUS EQU 03h ADCON0 EQU 1Fh PCFG1 EQU 9Fh,1

IRP EQU 7 ADCS1 EQU 1Fh,7 PCFG0 EQU 9Fh,0

RP1 EQU 6 ADCS0 EQU 1Fh,6 PUPOPW EQU 20h

RP0 EQU 5 CHS1 EQU 1Fh,4 DATPTR_ EQU 21h

TO EQU 4 CHS0 EQU 1Fh,3 ERG EQU 70h

PD EQU 3 GO_DONE EQU 1Fh,2 ARG0 EQU 70h

Z EQU 2 ADON EQU 1Fh,0 ARG1 EQU 72h

DC EQU 1 OPTION_R EQU 81H ARG2 EQU 74h

C EQU 0 GPUP EQU 81H,7 ARG3 EQU 76h

FSR EQU 04H INTEDG EQU 81H,6 ARG4 EQU 78h

GPIO EQU 05h T0CS EQU 81H,5 ARG5 EQU 7Ah

RA EQU 05h T0SE EQU 81H,4 ERR_ EQU 7Bh

PCLATH EQU 0Ah PSA EQU 81H,3 ERRVAR EQU 7Bh

INTCON EQU 0BH PS2 EQU 81H,2 PUPOPF EQU 7Ch

GIE EQU 0BH,7 PS1 EQU 81H,1 PUPOPS EQU 7DH

PEIE EQU 0BH,6 PS0 EQU 81H,0 PUPOPP EQU 7EH

T0IE EQU 0BH,5 TRISGP EQU 85h TIMERX EQU 7FH

INTE EQU 0BH,4 TRISA EQU 85h :

GPIE EQU 0BH,3 PIE1 EQU 8Ch

T0IF EQU 0BH,2 ADIE EQU 8Ch,6

;--

 :12F629

Appendix I

 DEFAULT.EQU (cont.)

181

INDIRECT EQU 00h TMR1CS EQU 10H,1 WPU0 EQU 95H,0

TMR0 EQU 01h TMR1ON EQU 10H,0 IOCB EQU 96H

RTCC EQU 01h CMCON EQU 19H IOCB5 EQU 96H,5

PCL EQU 02h COUT EQU 19H,6 IOCB4 EQU 96H,4

PC EQU 02h CINV EQU 19H,4 IOCB3 EQU 96H,3

STATUS EQU 03h CIS EQU 19H,3 IOCB2 EQU 96H,2

IRP EQU 7 CM2 EQU 19H,2 IOCB1 EQU 96H,1

RP1 EQU 6 CM1 EQU 19H,1 IOCB0 EQU 96H,0

RP0 EQU 5 CM0 EQU 19H,0 VRCON EQU 99H

TO EQU 4 ADFM EQU 1Fh,7 VREN EQU 99H,7

PD EQU 3 VCFG EQU 1Fh,6 VRR EQU 99H,5

Z EQU 2 CHS1 EQU 1Fh,3 VR3 EQU 99H,3

DC EQU 1 CHS0 EQU 1Fh,2 VR2 EQU 99H,2

C EQU 0 GO_DONE EQU 1Fh,1 VR1 EQU 99H,1

FSR EQU 04H ADON EQU 1Fh,0 VR0 EQU 99H,0

GPIO EQU 05h OPTION_R EQU 81H EEDTA EQU 9AH

RA EQU 05h GPUP EQU 81H,7 EEADR EQU 9BH

PCLATH EQU 0Ah INTEDG EQU 81H,6 EECON1 EQU 9CH

INTCON EQU 0BH T0CS EQU 81H,5 WRERR EQU 9CH,3

GIE EQU 0BH,7 T0SE EQU 81H,4 WREN EQU 9CH,2

PEIE EQU 0BH,6 PSA EQU 81H,3 WR EQU 9CH,1

T0IE EQU 0BH,5 PS2 EQU 81H,2 RD EQU 9CH,0

INTE EQU 0BH,4 PS1 EQU 81H,1 EECON2 EQU 9DH

GPIE EQU 0BH,3 PS0 EQU 81H,0 PUPOPW EQU 4Eh

T0IF EQU 0BH,2 TRISGP EQU 85H DATPTR_ EQU 4Fh

INTF EQU 0BH,1 TRISA EQU 85H ERG EQU 50h

GPIF EQU 0BH,0 PIE1 EQU 8CH ARG0 EQU 50h

PIR1 EQU 0CH EEIE EQU 8CH,7 ARG1 EQU 52h

EEIF EQU 0CH,7 ADIE EQU 8Ch,6 ARG2 EQU 54h

ADIF EQU 0CH,6 CMIE EQU 8CH,3 ARG3 EQU 56h

CMIF EQU 0CH,3 TMR1IE EQU 8CH,0 ARG4 EQU 58h

TMR1IF EQU 0CH,0 PCON EQU 8EH ARG5 EQU 5Ah

TMR1L EQU 0EH POR EQU 8EH,1 ERR_ EQU 5Bh

TMR1H EQU 0FH BOD EQU 8EH,0 ERRVAR EQU 5Bh

T1CON EQU 10H OSCCAL_ EQU 90H PUPOPF EQU 5Ch

TMR1GE EQU 10H,6 WPU EQU 95H PUPOPS EQU 5DH

T1CKPS1 EQU 10H,5 WPU5 EQU 95H,5 PUPOPP EQU 5EH

T1CKPS0 EQU 10H,4 WPU4 EQU 95H,4 TIMERX EQU 5FH

T1OSCEN EQU 10H,3 WPU2 EQU 95H,2 :

T1SYNC EQU 10H,2 WPU1 EQU 95H,1

;--

 :12F675

INDIRECT EQU 00h CINV EQU 19H,4 IOCB1 EQU 96H,1

TMR0 EQU 01h CIS EQU 19H,3 IOCB0 EQU 96H,0

RTCC EQU 01h CM2 EQU 19H,2 VRCON EQU 99H

PCL EQU 02h CM1 EQU 19H,1 VREN EQU 99H,7

PC EQU 02h CM0 EQU 19H,0 VRR EQU 99H,5

STATUS EQU 03h ADRESH EQU 1Eh VR3 EQU 99H,3

IRP EQU 7 ADCON0 EQU 1Fh VR2 EQU 99H,2

RP1 EQU 6 ADFM EQU 1Fh,7 VR1 EQU 99H,1

RP0 EQU 5 VCFG EQU 1Fh,6 VR0 EQU 99H,0

Appendix I

 DEFAULT.EQU (cont.)

182

TO EQU 4 CHS1 EQU 1Fh,3 EEDTA EQU 9AH

PD EQU 3 CHS0 EQU 1Fh,2 EEADR EQU 9BH

Z EQU 2 GO_DONE EQU 1Fh,1 EECON1 EQU 9CH

DC EQU 1 ADON EQU 1Fh,0 WRERR EQU 9CH,3

C EQU 0 OPTION_R EQU 81H WREN EQU 9CH,2

FSR EQU 04H GPUP EQU 81H,7 WR EQU 9CH,1

GPIO EQU 05h INTEDG EQU 81H,6 RD EQU 9CH,0

RA EQU 05h T0CS EQU 81H,5 EECON2 EQU 9DH

PCLATH EQU 0Ah T0SE EQU 81H,4 ADRESL EQU 9EH

INTCON EQU 0BH PSA EQU 81H,3 ANSEL EQU 9Fh

GIE EQU 0BH,7 PS2 EQU 81H,2 ADCON1 EQU 9FH

PEIE EQU 0BH,6 PS1 EQU 81H,1 ADCS2 EQU 9FH,6

T0IE EQU 0BH,5 PS0 EQU 81H,0 ADCS1 EQU 9FH,5

INTE EQU 0BH,4 TRISGP EQU 85H ADCS0 EQU 9FH,4

GPIE EQU 0BH,3 TRISA EQU 85H ANS3 EQU 9FH,3

T0IF EQU 0BH,2 PIE1 EQU 8CH ANS2 EQU 9FH,2

INTF EQU 0BH,1 EEIE EQU 8CH,7 ANS1 EQU 9Fh,1

GPIF EQU 0BH,0 ADIE EQU 8Ch,6 ANS0 EQU 9Fh,0

PIR1 EQU 0CH CMIE EQU 8CH,3 PUPOPW EQU 4Eh

EEIF EQU 0CH,7 TMR1IE EQU 8CH,0 DATPTR_ EQU 4Fh

ADIF EQU 0CH,6 PCON EQU 8EH ERG EQU 50h

CMIF EQU 0CH,3 POR EQU 8EH,1 ARG0 EQU 50h

TMR1IF EQU 0CH,0 BOD EQU 8EH,0 ARG1 EQU 52h

TMR1L EQU 0EH OSCCAL_ EQU 90H ARG2 EQU 54h

TMR1H EQU 0FH WPU EQU 95H ARG3 EQU 56h

T1CON EQU 10H WPU5 EQU 95H,5 ARG4 EQU 58h

TMR1GE EQU 10H,6 WPU4 EQU 95H,4 ARG5 EQU 5Ah

T1CKPS1 EQU 10H,5 WPU2 EQU 95H,2 ERR_ EQU 5Bh

T1CKPS0 EQU 10H,4 WPU1 EQU 95H,1 ERRVAR EQU 5Bh

T1OSCEN EQU 10H,3 WPU0 EQU 95H,0 PUPOPF EQU 5Ch

T1SYNC EQU 10H,2 IOCB EQU 96H PUPOPS EQU 5DH

TMR1CS EQU 10H,1 IOCB5 EQU 96H,5 PUPOPP EQU 5EH

TMR1ON EQU 10H,0 IOCB4 EQU 96H,4 TIMERX EQU 5FH

CMCON EQU 19H IOCB3 EQU 96H,3 :

COUT EQU 19H,6 IOCB2 EQU 96H,2

;--

 :16C505

INDIRECT EQU 00h C EQU 0 ARG4 EQU 10h

TMR0 EQU 01h FSR EQU 04h ARG5 EQU 12h

RTCC EQU 01h OSCCAL_ EQU 05h ERRVAR EQU 13h

PCL EQU 02h PORTB EQU 06h ERR_ EQU 13h

PC EQU 02h RB EQU 06h DATPTR_ EQU 14h

STATUS EQU 03h PORTC EQU 07H RATRIS_ EQU 15h

GPWUF EQU 7 RC EQU 07h RBTRIS_ EQU 16h

PA0 EQU 5 ERG EQU 08h RCTRIS_ EQU 17h

TO EQU 4 ARG0 EQU 08h :

PD EQU 3 ARG1 EQU 0Ah

Z EQU 2 ARG2 EQU 0Ch

DC EQU 1 ARG3 EQU 0Eh

;--

:16C53

Appendix I

 DEFAULT.EQU (cont.)

183

:16C54

:16C55

:16C56

:16C57

 :16C58

INDIRECT EQU 00h C EQU 0 ERRVAR EQU 13h

TMR0 EQU 01h FSR EQU 04h ERR_ EQU 13h

RTCC EQU 01h PORTA EQU 05h DATPTR_ EQU 14h

PCL EQU 02h RA EQU 05h RATRIS_ EQU 15h

PC EQU 02h PORTB EQU 06h RBTRIS_ EQU 16h

STATUS EQU 03h RB EQU 06h :

 PA2 EQU 7 ERG EQU 08h :16C55

 PA1 EQU 6 ARG0 EQU 08h :16C57

PA0 EQU 5 ARG1 EQU 0Ah RC EQU 07h

TO EQU 4 ARG2 EQU 0Ch RCTRIS_ EQU 17h

PD EQU 3 ARG3 EQU 0Eh :

Z EQU 2 ARG4 EQU 10h

DC EQU 1 ARG5 EQU 12h

;--

:16C554

:16C556

 :16C558

INDIRECT EQU 00h PCLATH EQU 0Ah TRISB EQU 86H

TMR0 EQU 01h INTCON EQU 0Bh PCON EQU 8Eh

RTCC EQU 01h GIE EQU 0Bh,7 POR EQU 8Eh,1

PCL EQU 02h T0IE EQU 0Bh,5 PUPOPW EQU 20H

PC EQU 02h INTE EQU 0Bh,4 PUPOPS EQU 21H

STATUS EQU 03h RBIE EQU 0Bh,3 PUPOPP EQU 22H

IRP EQU 7 T0IF EQU 0Bh,2 PUPOPF EQU 23H

RP1 EQU 6 INTF EQU 0Bh,1 ERG EQU 24h

RP0 EQU 5 RBIF EQU 0Bh,0 ARG0 EQU 24h

TO EQU 4 OPTION_R EQU 81h ARG1 EQU 26h

PD EQU 3 RBUP EQU 81H,7 ARG2 EQU 28h

Z EQU 2 INTEDG EQU 81H,6 ARG3 EQU 2Ah

DC EQU 1 T0CS EQU 81H,5 ARG4 EQU 2Ch

C EQU 0 T0SE EQU 81H,4 ARG5 EQU 2Eh

FSR EQU 04H PSA EQU 81H,3 ERRVAR EQU 2Fh

PORTA EQU 05H PS2 EQU 81H,2 ERR_ EQU 2Fh

RA EQU 05H PS1 EQU 81H,1 DATPTR_ EQU 30h

PORTB EQU 06h PS0 EQU 81H,0 :

RB EQU 06h TRISA EQU 85H

;--

 :16C61

INDIRECT EQU 00h PCLATH EQU 0Ah TRISA EQU 85H

TMR0 EQU 01h INTCON EQU 0Bh TRISB EQU 86H

RTCC EQU 01h GIE EQU 0Bh,7 PUPOPW EQU 0CH

PCL EQU 02h PEIE EQU 0Bh,6 PUPOPS EQU 0DH

PC EQU 02h T0IE EQU 0Bh,5 PUPOPP EQU 0EH

STATUS EQU 03h INTE EQU 0Bh,4 PUPOPF EQU 0Fh

IRP EQU 7 RBIE EQU 0Bh,3 ERG EQU 10h

RP1 EQU 6 T0IF EQU 0Bh,2 ARG0 EQU 10h

Appendix I

 DEFAULT.EQU (cont.)

184

RP0 EQU 5 INTF EQU 0Bh,1 ARG1 EQU 12h

TO EQU 4 RBIF EQU 0Bh,0 ARG2 EQU 14h

PD EQU 3 OPTION_R EQU 81h ARG3 EQU 16h

Z EQU 2 RBUP EQU 81H,7 ARG4 EQU 18h

DC EQU 1 INTEDG EQU 81H,6 ARG5 EQU 1Ah

C EQU 0 T0CS EQU 81H,5 ERRVAR EQU 1Bh

FSR EQU 04H T0SE EQU 81H,4 ERR_ EQU 1Bh

PORTA EQU 05H PSA EQU 81H,3 TIMERX EQU 1CH

RA EQU 05H PS2 EQU 81H,2 DATPTR_ EQU 1Dh

PORTB EQU 06H PS1 EQU 81H,1 :

RB EQU 06H PS0 EQU 81H,0

;--

:16C62

:16C62A

:16C64

 :16C64A

INDIRECT EQU 00H T1SYNC EQU 10H,2 RCIE EQU 8CH,5

TMR0 EQU 01H TMR1CS EQU 10H,1 TXIE EQU 8CH,4

RTCC EQU 01H TMR1ON EQU 10H,0 SSPIE EQU 8CH,3

PCL EQU 02H TMR2 EQU 11H CCP1IE EQU 8CH,2

PC EQU 02h T2CON EQU 12H TMR2IE EQU 8CH,1

STATUS EQU 03H TOUTPS3 EQU 12H,6 TMR1IE EQU 8CH,0

IRP EQU 7 TOUTPS2 EQU 12H,5 PCON EQU 8EH

RP1 EQU 6 TOUTPS1 EQU 12H,4 POR EQU 8EH,1

RP0 EQU 5 TOUTPS0 EQU 12H,3 BOR EQU 8EH,0

TO EQU 4 TMR2ON EQU 12H,2 PR2 EQU 92H

PD EQU 3 T2CKPS1 EQU 12H,1 SSPADD EQU 93H

Z EQU 2 T2CKPS0 EQU 12H,0 SSPSTAT EQU 94H

DC EQU 1 SSPBUF EQU 13H SMP EQU 94H,7

C EQU 0 SSPCON EQU 14H CKE EQU 94H,6

FSR EQU 04H WCOL EQU 14H,7 D_A EQU 94H,5

PORTA EQU 05H SSPOV EQU 14H,6 P EQU 94H,4

RA EQU 05H SSPEN EQU 14H,5 S EQU 94H,3

PORTB EQU 06H CKP EQU 14H,4 R_W EQU 94H,2

RB EQU 06H SSPM3 EQU 14H,3 UA EQU 94H,1

PORTC EQU 07H SSPM2 EQU 14H,2 BF EQU 94H,0

RC EQU 07H SSPM1 EQU 14H,1 PUPOPW EQU 20H

PCLATH EQU 0AH SSPM0 EQU 14H,0 PUPOPS EQU 21H

INTCON EQU 0BH CCPR1L EQU 15H PUPOPP EQU 22H

GIE EQU 0BH,7 CCPR1H EQU 16H PUPOPF EQU 23h

PEIE EQU 0BH,6 CCP1CON EQU 17H ERG EQU 24h

T0IE EQU 0BH,5 CCP1X EQU 17H,5 ARG0 EQU 24h

INTE EQU 0BH,4 CCP1Y EQU 17H,4 ARG1 EQU 26h

RBIE EQU 0BH,3 CCP1M3 EQU 17H,3 ARG2 EQU 28h

T0IF EQU 0BH,2 CCP1M2 EQU 17H,2 ARG3 EQU 2Ah

INTF EQU 0BH,1 CCP1M1 EQU 17H,1 ARG4 EQU 2Ch

RBIF EQU 0BH,0 CCP1M0 EQU 17H,0 ARG5 EQU 2Eh

PIR1 EQU 0CH OPTION_R EQU 81H ERRVAR EQU 2Fh

PSPIF EQU 0CH,7 RBUP EQU 81H,7 ERR_ EQU 2Fh

ADIF EQU 0CH,6 INTEDG EQU 81H,6 TIMERX EQU 30H

RCIF EQU 0CH,5 T0CS EQU 81H,5 DATPTR_ EQU 31h

Appendix I

 DEFAULT.EQU (cont.)

185

TXIF EQU 0CH,4 T0SE EQU 81H,4 :

 SSPIF EQU 0CH,3 PSA EQU 81H,3 :16C64

 CCP1IF EQU 0CH,2 PS2 EQU 81H,2 :16C64A

TMR2IF EQU 0CH,1 PS1 EQU 81H,1 PORTD EQU 08H

TMR1IF EQU 0CH,0 PS0 EQU 81H,0 RD EQU 08H

TMR1L EQU 0EH TRISA EQU 85H PORTE EQU 09H

TMR1H EQU 0FH TRISB EQU 86H RE EQU 09H

T1CON EQU 10H TRISC EQU 87H TRISD EQU 88H

T1CKPS1 EQU 10H,5 PIE1 EQU 8CH TRISE EQU 89H

T1CKPS0 EQU 10H,4 PSPIE EQU 8CH,7 :

T1OSCEN EQU 10H,3 ADIE EQU 8CH,6

;--

:16C63

:16C65

:16C65A

:16C66

:16C66A

:16C67

 :16C67A

INDIRECT EQU 00H TMR2ON EQU 12H,2 SSPIE EQU 8CH,3

TMR0 EQU 01H T2CKPS1 EQU 12H,1 CCP1IE EQU 8CH,2

RTCC EQU 01H T2CKPS0 EQU 12H,0 TMR2IE EQU 8CH,1

PCL EQU 02H SSPBUF EQU 13H TMR1IE EQU 8CH,0

PC EQU 02h SSPCON EQU 14H PIE2 EQU 8DH

STATUS EQU 03H WCOL EQU 14H,7 EEIE EQU 8DH,4

IRP EQU 7 SSPOV EQU 14H,6 BCLIE EQU 8DH,3

RP1 EQU 6 SSPEN EQU 14H,5 CCP2IE EQU 8DH,0

RP0 EQU 5 CKP EQU 14H,4 PCON EQU 8EH

TO EQU 4 SSPM3 EQU 14H,3 POR EQU 8EH,1

PD EQU 3 SSPM2 EQU 14H,2 BOR EQU 8EH,0

Z EQU 2 SSPM1 EQU 14H,1 PR2 EQU 92H

DC EQU 1 SSPM0 EQU 14H,0 SSPADD EQU 93H

C EQU 0 CCPR1L EQU 15H SSPSTAT EQU 94H

FSR EQU 04H CCPR1H EQU 16H SMP EQU 94H,7

PORTA EQU 05H CCP1CON EQU 17H CKE EQU 94H,6

RA EQU 05H CCP1X EQU 17H,5 D_A EQU 94H,5

PORTB EQU 06H CCP1Y EQU 17H,4 P EQU 94H,4

RB EQU 06H CCP1M3 EQU 17H,3 S EQU 94H,3

PORTC EQU 07H CCP1M2 EQU 17H,2 R_W EQU 94H,2

RC EQU 07H CCP1M1 EQU 17H,1 UA EQU 94H,1

PCLATH EQU 0AH CCP1M0 EQU 17H,0 BF EQU 94H,0

INTCON EQU 0BH RCSTA EQU 18H TXSTA EQU 98H

GIE EQU 0BH,7 SPEN EQU 18H,7 CSRC EQU 98H,7

PEIE EQU 0BH,6 RX9 EQU 18H,6 TX9 EQU 98H,6

T0IE EQU 0BH,5 SREN EQU 18H,5 TXEN EQU 98H,5

INTE EQU 0BH,4 CREN EQU 18H,4 SYNC EQU 98H,4

RBIE EQU 0BH,3 ADDEN EQU 18H,3 BRGH EQU 98H,2

T0IF EQU 0BH,2 FERR EQU 18H,2 TRMT EQU 98H,1

INTF EQU 0BH,1 OERR EQU 18H,1 TX9D EQU 98H,0

RBIF EQU 0BH,0 RX9D EQU 18H,0 SPBRG EQU 99H

PIR1 EQU 0CH TXREG EQU 19H PUPOPW EQU 20H

Appendix I

 DEFAULT.EQU (cont.)

186

PSPIF EQU 0CH,7 RCREG EQU 1AH PUPOPS EQU 21H

ADIF EQU 0CH,6 CCPR2L EQU 1BH PUPOPP EQU 22H

RCIF EQU 0CH,5 CCPR2H EQU 1CH PUPOPF EQU 23h

TXIF EQU 0CH,4 CCP2CON EQU 1DH ERG EQU 24h

SSPIF EQU 0CH,3 CCP2X EQU 1DH,5 ARG0 EQU 24h

CCP1IF EQU 0CH,2 CCP2Y EQU 1DH,4 ARG1 EQU 26h

TMR2IF EQU 0CH,1 CCP2M3 EQU 1DH,3 ARG2 EQU 28h

TMR1IF EQU 0CH,0 CCP2M2 EQU 1DH,2 ARG3 EQU 2Ah

PIR2 EQU 0DH CCP2M1 EQU 1DH,1 ARG4 EQU 2Ch

EEIF EQU 0DH,4 CCP2M0 EQU 1DH,0 ARG5 EQU 2Eh

BCLIF EQU 0DH,3 OPTION_R EQU 81H ERRVAR EQU 2Fh

CCP2IF EQU 0DH,0 RBUP EQU 81H,7 ERR_ EQU 2Fh

TMR1L EQU 0EH INTEDG EQU 81H,6 TIMERX EQU 30H

TMR1H EQU 0FH T0CS EQU 81H,5 DATPTR_ EQU 31h

T1CON EQU 10H T0SE EQU 81H,4 :

 T1CKPS1 EQU 10H,5 PSA EQU 81H,3 :16C65

 T1CKPS0 EQU 10H,4 PS2 EQU 81H,2 :16C65A

 T1OSCEN EQU 10H,3 PS1 EQU 81H,1 :16C67

 T1SYNC EQU 10H,2 PS0 EQU 81H,0 :16C67A

TMR1CS EQU 10H,1 TRISA EQU 85H PORTD EQU 08H

TMR1ON EQU 10H,0 TRISB EQU 86H RD EQU 08H

TMR2 EQU 11H TRISC EQU 87H PORTE EQU 09H

T2CON EQU 12H PIE1 EQU 8CH RE EQU 09H

TOUTPS3 EQU 12H,6 PSPIE EQU 8CH,7 TRISD EQU 88H

TOUTPS2 EQU 12H,5 ADIE EQU 8CH,6 TRISE EQU 89H

TOUTPS1 EQU 12H,4 RCIE EQU 8CH,5 :

TOUTPS0 EQU 12H,3 TXIE EQU 8CH,4

;--

:16C620

:16C621

 :16C622

INDIRECT EQU 00h INTF EQU 0Bh,1 VRCON EQU 9FH

TMR0 EQU 01h RBIF EQU 0Bh,0 VREN EQU 9FH,7

RTCC EQU 01h PIR1 EQU 0Ch VROE EQU 9FH,6

PCL EQU 02h CMIF EQU 0Ch,6 VRR EQU 9FH,5

PC EQU 02h CMCON EQU 1FH VR3 EQU 9FH,3

STATUS EQU 03h C2OUT EQU 1FH,7 VR2 EQU 9FH,2

IRP EQU 7 C1OUT EQU 1FH,6 VR1 EQU 9FH,1

RP1 EQU 6 CIS EQU 1FH,3 VR0 EQU 9FH,0

RP0 EQU 5 CM2 EQU 1FH,2 PUPOPW EQU 20H

TO EQU 4 CM1 EQU 1FH,1 PUPOPS EQU 21H

PD EQU 3 CM0 EQU 1FH,0 PUPOPP EQU 22H

Z EQU 2 OPTION_R EQU 81h PUPOPF EQU 23h

DC EQU 1 RBUP EQU 81H,7 ERG EQU 24h

C EQU 0 INTEDG EQU 81H,6 ARG0 EQU 24h

FSR EQU 04H T0CS EQU 81H,5 ARG1 EQU 26h

PORTA EQU 05H T0SE EQU 81H,4 ARG2 EQU 28h

RA EQU 05H PSA EQU 81H,3 ARG3 EQU 2Ah

PORTB EQU 06H PS2 EQU 81H,2 ARG4 EQU 2Ch

RB EQU 06H PS1 EQU 81H,1 ARG5 EQU 2Eh

PCLATH EQU 0Ah PS0 EQU 81H,0 ERRVAR EQU 2Fh

Appendix I

 DEFAULT.EQU (cont.)

187

INTCON EQU 0Bh TRISA EQU 85H ERR_ EQU 2Fh

GIE EQU 0Bh,7 TRISB EQU 86H TIMERX EQU 30H

PEIE EQU 0Bh,6 PIE1 EQU 8CH DATPTR_ EQU 31h

T0IE EQU 0Bh,5 CMIE EQU 8CH,6 :

INTE EQU 0Bh,4 PCON EQU 8EH

RBIE EQU 0Bh,3 POR EQU 8EH,1

T0IF EQU 0Bh,2 BO EQU 8EH,0

;--

:16E623

:16E624

 :16E625

INDIRECT EQU 00h RBIF EQU 0Bh,0 EESDA EQU 90H,1

TMR0 EQU 01h PIR1 EQU 0Ch EEVDD EQU 90H,0

RTCC EQU 01h CMIF EQU 0Ch,6 VRCON EQU 9FH

PCL EQU 02h CMCON EQU 1FH VREN EQU 9FH,7

PC EQU 02h C2OUT EQU 1FH,7 VROE EQU 9FH,6

STATUS EQU 03h C1OUT EQU 1FH,6 VRR EQU 9FH,5

IRP EQU 7 CIS EQU 1FH,3 VR3 EQU 9FH,3

RP1 EQU 6 CM2 EQU 1FH,2 VR2 EQU 9FH,2

RP0 EQU 5 CM1 EQU 1FH,1 VR1 EQU 9FH,1

TO EQU 4 CM0 EQU 1FH,0 VR0 EQU 9FH,0

PD EQU 3 OPTION_R EQU 81h PUPOPW EQU 70H

Z EQU 2 RBUP EQU 81H,7 PUPOPS EQU 71H

DC EQU 1 INTEDG EQU 81H,6 PUPOPP EQU 72H

C EQU 0 T0CS EQU 81H,5 PUPOPF EQU 73h

FSR EQU 04H T0SE EQU 81H,4 ERG EQU 74h

PORTA EQU 05H PSA EQU 81H,3 ARG0 EQU 74h

RA EQU 05H PS2 EQU 81H,2 ARG1 EQU 76h

PORTB EQU 06H PS1 EQU 81H,1 ARG2 EQU 78h

RB EQU 06H PS0 EQU 81H,0 ARG3 EQU 7Ah

PCLATH EQU 0Ah TRISA EQU 85H ARG4 EQU 7Ch

INTCON EQU 0Bh TRISB EQU 86H ARG5 EQU 7Eh

GIE EQU 0Bh,7 PIE1 EQU 8CH ERRVAR EQU 7Fh

PEIE EQU 0Bh,6 CMIE EQU 8CH,6 ERR_ EQU 7Fh

T0IE EQU 0Bh,5 PCON EQU 8EH TIMERX EQU 20H

INTE EQU 0Bh,4 POR EQU 8EH,1 DATPTR_ EQU 21h

RBIE EQU 0Bh,3 BO EQU 8EH,0 :

T0IF EQU 0Bh,2 EEINTF EQU 90H

INTF EQU 0Bh,1 EESCL EQU 90H,2

;--

:16F627

 :16F628

INDIRECT EQU 00h CCP1Y EQU 17h,4 POR EQU 8EH,1

TMR0 EQU 01h CCP1M3 EQU 17h,3 BO EQU 8EH,0

RTCC EQU 01h CCP1M2 EQU 17h,2 PR2 EQU 92h

PCL EQU 02h CCP1M1 EQU 17h,1 TXSTA EQU 98h

PC EQU 02h CCP1M0 EQU 17h,0 CSRC EQU 98h,7

STATUS EQU 03h RCSTA EQU 18h TX9 EQU 98h,6

IRP EQU 7 SPEN EQU 18h,7 TXEN EQU 98h,5

RP1 EQU 6 RX9 EQU 18h,6 SYNC EQU 98h,4

RP0 EQU 5 SREN EQU 18h,5 BRGH EQU 98h,2

Appendix I

 DEFAULT.EQU (cont.)

188

TO EQU 4 CREN EQU 18h,4 TRMT EQU 98h,1

PD EQU 3 ADDEN EQU 18h,3 TX9D EQU 98h,0

Z EQU 2 FERR EQU 18h,2 SPBRG EQU 99h

DC EQU 1 OERR EQU 18h,1 EEDTA EQU 9Ah

C EQU 0 RX9D EQU 18h,0 EEADR EQU 9Bh

FSR EQU 04H TXREG EQU 19h EECON1 EQU 9Ch

PORTA EQU 05H RCREG EQU 1Ah WRERR EQU 9Ch,3

RA EQU 05H CMCON EQU 1FH WREN EQU 9Ch,2

PORTB EQU 06H C2OUT EQU 1FH,7 WR_ EQU 9Ch,1

RB EQU 06H C1OUT EQU 1FH,6 RD_ EQU 9Ch,0

PCLATH EQU 0Ah C2INV EQU 1Fh,5 EECON2 EQU 9Dh

INTCON EQU 0Bh C1INV EQU 1Fh,4 VRCON EQU 9FH

GIE EQU 0Bh,7 CIS EQU 1FH,3 VREN EQU 9FH,7

PEIE EQU 0Bh,6 CM2 EQU 1FH,2 VROE EQU 9FH,6

T0IE EQU 0Bh,5 CM1 EQU 1FH,1 VRR EQU 9FH,5

INTE EQU 0Bh,4 CM0 EQU 1FH,0 VR3 EQU 9FH,3

RBIE EQU 0Bh,3 OPTION_R EQU 81h VR2 EQU 9FH,2

T0IF EQU 0Bh,2 RBUP EQU 81H,7 VR1 EQU 9FH,1

INTF EQU 0Bh,1 INTEDG EQU 81H,6 VR0 EQU 9FH,0

RBIF EQU 0Bh,0 T0CS EQU 81H,5 PUPOPS EQU 6DH

PIR1 EQU 0Ch T0SE EQU 81H,4 PUPOPP EQU 6EH

EEIF EQU 0Ch,7 PSA EQU 81H,3 PUPOPF EQU 6Fh

CMIF EQU 0Ch,6 PS2 EQU 81H,2 ERG EQU 70h

RCIF EQU 0Ch,5 PS1 EQU 81H,1 ARG0 EQU 70h

TXIF EQU 0Ch,4 PS0 EQU 81H,0 ARG1 EQU 72h

CCP1IF EQU 0Ch,2 TRISA EQU 85H ARG2 EQU 74h

TMR2IF EQU 0Ch,1 TRISB EQU 86H ARG3 EQU 76h

TMR1IF EQU 0Ch,0 PIE1 EQU 8CH ARG4 EQU 78h

TMR1L EQU 0Eh EEIE EQU 8Ch,7 ARG5 EQU 7Ah

TMR1H EQU 0Fh CMIE EQU 8CH,6 ERRVAR EQU 7Bh

T1CON EQU 10h RCIE EQU 8Ch,5 ERR_ EQU 7Bh

TMR2 EQU 11h TXIE EQU 8Ch,4 TIMERX EQU 7CH

T2CON EQU 12h CCP1IE EQU 8Ch,2 DATPTR_ EQU 7Dh

CCPR1L EQU 15h TMR2IE EQU 8Ch,1 PUPOPW EQU 7FH

CCPR1H EQU 16h TMR1IE EQU 8Ch,0 :

CCP1CON EQU 17h PCON EQU 8EH

CCP1X EQU 17h,5 OSCF EQU 8Eh,3

;--

:16C71

:16C710

 :16C711

INDIRECT EQU 00H CHS0 EQU 08h,3 PS0 EQU 81H,0

TMR0 EQU 01H GO_DONE EQU 08h,2 TRISA EQU 85H

RTCC EQU 01H ADIF EQU 08h,1 TRISB EQU 86H

PCL EQU 02H ADON EQU 08h,0 ADCON1 EQU 88H

PC EQU 02h ADRES EQU 09h PCFG1 EQU 88H,1

STATUS EQU 03H PCLATH EQU 0Ah PCFG0 EQU 88H,0

IRP EQU 7 INTCON EQU 0BH PUPOPW EQU 0CH

RP1 EQU 6 GIE EQU 0BH,7 PUPOPS EQU 0DH

RP0 EQU 5 ADIE EQU 0BH,6 PUPOPP EQU 0EH

TO EQU 4 T0IE EQU 0BH,5 PUPOPF EQU 0FH

Appendix I

 DEFAULT.EQU (cont.)

189

PD EQU 3 INTE EQU 0BH,4 ERG EQU 10h

Z EQU 2 RBIE EQU 0BH,3 ARG0 EQU 10h

DC EQU 1 T0IF EQU 0BH,2 ARG1 EQU 12h

C EQU 0 INTF EQU 0BH,1 ARG2 EQU 14h

FSR EQU 04H RBIF EQU 0BH,0 ARG3 EQU 16h

PORTA EQU 05H OPTION_R EQU 81H ARG4 EQU 18h

RA EQU 05H RBUP EQU 81H,7 ARG5 EQU 1Ah

PORTB EQU 06H INTEDG EQU 81H,6 ERRVAR EQU 1Bh

RB EQU 06H T0CS EQU 81H,5 ERR_ EQU 1Bh

ADCON0 EQU 08h T0SE EQU 81H,4 TIMERX EQU 1CH

ADCS1 EQU 08h,7 PSA EQU 81H,3 DATPTR_ EQU 1Dh

ADCS0 EQU 08h,6 PS2 EQU 81H,2 :

CHS1 EQU 08h,4 PS1 EQU 81H,1

;--

 :16C715

INDIRECT EQU 00H INTE EQU 0BH,4 TRISA EQU 85H

TMR0 EQU 01H RBIE EQU 0BH,3 TRISB EQU 86H

RTCC EQU 01H T0IF EQU 0BH,2 ADCON1 EQU 9FH

PCL EQU 02H INTF EQU 0BH,1 PCFG1 EQU 9FH,1

PC EQU 02h RBIF EQU 0BH,0 PCFG0 EQU 9FH,0

STATUS EQU 03H PIR1 EQU 0CH PUPOPS EQU 6DH

IRP EQU 7 ADIF EQU 0CH,6 PUPOPP EQU 6EH

RP1 EQU 6 ADCON0 EQU 1Fh PUPOPF EQU 6Fh

RP0 EQU 5 ADCS1 EQU 1Fh,7 ERG EQU 70h

TO EQU 4 ADCS0 EQU 1Fh,6 ARG0 EQU 70h

PD EQU 3 CHS1 EQU 1Fh,4 ARG1 EQU 72h

Z EQU 2 CHS0 EQU 1Fh,3 ARG2 EQU 74h

DC EQU 1 GO_DONE EQU 1Fh,2 ARG3 EQU 76h

C EQU 0 ADON EQU 1Fh,0 ARG4 EQU 78h

FSR EQU 04H ADRES EQU 1Eh ARG5 EQU 7Ah

PORTA EQU 05H OPTION_R EQU 81H ERRVAR EQU 7Bh

RA EQU 05H RBUP EQU 81H,7 ERR_ EQU 7Bh

PORTB EQU 06H INTEDG EQU 81H,6 TIMERX EQU 7CH

RB EQU 06H T0CS EQU 81H,5 DATPTR_ EQU 7Dh

PCLATH EQU 0Ah T0SE EQU 81H,4 PUPOPW EQU 7FH

INTCON EQU 0BH PSA EQU 81H,3 :

GIE EQU 0BH,7 PS2 EQU 81H,2

ADIE EQU 0BH,6 PS1 EQU 81H,1

T0IE EQU 0BH,5 PS0 EQU 81H,0

;--

 :16C72

INDIRECT EQU 00H TMR2 EQU 11H TRISA EQU 85H

TMR0 EQU 01H T2CON EQU 12H TRISB EQU 86H

RTCC EQU 01H TOUTPS3 EQU 12H,6 TRISC EQU 87H

PCL EQU 02H TOUTPS2 EQU 12H,5 PIE1 EQU 8CH

PC EQU 02h TOUTPS1 EQU 12H,4 ADIE EQU 8CH,6

STATUS EQU 03H TOUTPS0 EQU 12H,3 SSPIE EQU 8CH,3

IRP EQU 7 TMR2ON EQU 12H,2 CCP1IE EQU 8CH,2

RP1 EQU 6 T2CKPS1 EQU 12H,1 TMR2IE EQU 8CH,1

RP0 EQU 5 T2CKPS0 EQU 12H,0 TMR1IE EQU 8CH,0

TO EQU 4 SSPBUF EQU 13H PCON EQU 8EH

Appendix I

 DEFAULT.EQU (cont.)

190

PD EQU 3 SSPCON EQU 14H POR EQU 8EH,1

Z EQU 2 WCOL EQU 14H,7 BOR EQU 8EH,0

DC EQU 1 SSPOV EQU 14H,6 PR2 EQU 92H

C EQU 0 SSPEN EQU 14H,5 SSPADD EQU 93H

FSR EQU 04H CKP EQU 14H,4 SSPSTAT EQU 94H

PORTA EQU 05H SSPM3 EQU 14H,3 SMP EQU 94H,7

RA EQU 05H SSPM2 EQU 14H,2 CKE EQU 94H,6

PORTB EQU 06H SSPM1 EQU 14H,1 D_A EQU 94H,5

RB EQU 06H SSPM0 EQU 14H,0 P EQU 94H,4

PORTC EQU 07H CCPR1L EQU 15H S EQU 94H,3

RC EQU 07H CCPR1H EQU 16H R_W EQU 94H,2

PCLATH EQU 0AH CCP1CON EQU 17H UA EQU 94H,1

INTCON EQU 0BH CCP1X EQU 17H,5 BF EQU 94H,0

GIE EQU 0BH,7 CCP1Y EQU 17H,4 ADCON1 EQU 9FH

PEIE EQU 0BH,6 CCP1M3 EQU 17H,3 ADFM EQU 9FH,7

T0IE EQU 0BH,5 CCP1M2 EQU 17H,2 PCFG3 EQU 9FH,3

INTE EQU 0BH,4 CCP1M1 EQU 17H,1 PCFG2 EQU 9FH,2

RBIE EQU 0BH,3 CCP1M0 EQU 17H,0 PCFG1 EQU 9FH,1

T0IF EQU 0BH,2 ADRES EQU 1EH PCFG0 EQU 9FH,0

INTF EQU 0BH,1 ADCON0 EQU 1FH PUPOPW EQU 20H

RBIF EQU 0BH,0 ADCS1 EQU 1FH,7 PUPOPS EQU 21H

PIR1 EQU 0CH ADCS0 EQU 1FH,6 PUPOPP EQU 22H

ADIF EQU 0CH,6 CHS2 EQU 1FH,5 PUPOPF EQU 23h

SSPIF EQU 0CH,3 CHS1 EQU 1FH,4 ERG EQU 24h

CCP1IF EQU 0CH,2 CHS0 EQU 1FH,3 ARG0 EQU 24h

TMR2IF EQU 0CH,1 GO_DONE EQU 1FH,2 ARG1 EQU 26h

TMR1IF EQU 0CH,0 ADON EQU 1FH,0 ARG2 EQU 28h

TMR1L EQU 0EH OPTION_R EQU 81H ARG3 EQU 2Ah

TMR1H EQU 0FH RBUP EQU 81H,7 ARG4 EQU 2Ch

T1CON EQU 10H INTEDG EQU 81H,6 ARG5 EQU 2Eh

T1CKPS1 EQU 10H,5 T0CS EQU 81H,5 ERRVAR EQU 2Fh

T1CKPS0 EQU 10H,4 T0SE EQU 81H,4 ERR_ EQU 2Fh

T1OSCEN EQU 10H,3 PSA EQU 81H,3 TIMERX EQU 30H

T1SYNC EQU 10H,2 PS2 EQU 81H,2 DATPTR_ EQU 31h

TMR1CS EQU 10H,1 PS1 EQU 81H,1 :

TMR1ON EQU 10H,0 PS0 EQU 81H,0

;--

:16C73

:16C73A

:16C74

 :16C74A

INDIRECT EQU 00H TOUTPS0 EQU 12H,3 TRISA EQU 85H

TMR0 EQU 01H TMR2ON EQU 12H,2 TRISB EQU 86H

RTCC EQU 01H T2CKPS1 EQU 12H,1 TRISC EQU 87H

PCL EQU 02H T2CKPS0 EQU 12H,0 TRISD EQU 88H

PC EQU 02H SSPBUF EQU 13H TRISE EQU 89H

STATUS EQU 03H SSPCON EQU 14H PIE1 EQU 8CH

IRP EQU 7 WCOL EQU 14H,7 PSPIE EQU 8CH,7

RP1 EQU 6 SSPOV EQU 14H,6 ADIE EQU 8CH,6

RP0 EQU 5 SSPEN EQU 14H,5 RCIE EQU 8CH,5

TO EQU 4 CKP EQU 14H,4 TXIE EQU 8CH,4

Appendix I

 DEFAULT.EQU (cont.)

191

PD EQU 3 SSPM3 EQU 14H,3 SSPIE EQU 8CH,3

Z EQU 2 SSPM2 EQU 14H,2 CCP1IE EQU 8CH,2

DC EQU 1 SSPM1 EQU 14H,1 TMR2IE EQU 8CH,1

C EQU 0 SSPM0 EQU 14H,0 TMR1IE EQU 8CH,0

FSR EQU 04H CCPR1L EQU 15H PIE2 EQU 8DH

PORTA EQU 05H CCPR1H EQU 16H CCP2IE EQU 8DH,0

RA EQU 05H CCP1CON EQU 17H PCON EQU 8EH

PORTB EQU 06H CCP1X EQU 17H,5 POR EQU 8EH,1

RB EQU 06H CCP1Y EQU 17H,4 BOR EQU 8EH,0

PORTC EQU 07H CCP1M3 EQU 17H,3 PR2 EQU 92H

RC EQU 07H CCP1M2 EQU 17H,2 SSPADD EQU 93H

PORTD EQU 08H CCP1M1 EQU 17H,1 SSPSTAT EQU 94H

RD EQU 08H CCP1M0 EQU 17H,0 D_A EQU 94H,5

PORTE EQU 09H RCSTA EQU 18H P EQU 94H,4

RE EQU 09H SPEN EQU 18H,7 S EQU 94H,3

PCLATH EQU 0AH RX9 EQU 18H,6 R_W EQU 94H,2

INTCON EQU 0BH SREN EQU 18H,5 UA EQU 94H,1

GIE EQU 0BH,7 CREN EQU 18H,4 BF EQU 94H,0

PEIE EQU 0BH,6 FERR EQU 18H,2 TXSTA EQU 98H

T0IE EQU 0BH,5 OERR EQU 18H,1 CSRC EQU 98H,7

INTE EQU 0BH,4 RX9D EQU 18H,0 TX9 EQU 98H,6

RBIE EQU 0BH,3 TXREG EQU 19H TXEN EQU 98H,5

T0IF EQU 0BH,2 RCREG EQU 1AH SYNC EQU 98H,4

INTF EQU 0BH,1 CCPR2L EQU 1BH BRGH EQU 98H,2

RBIF EQU 0BH,0 CCPR2H EQU 1CH TRMT EQU 98H,1

PIR1 EQU 0CH CCP2CON EQU 1DH TX9D EQU 98H,0

PSPIF EQU 0CH,7 CCP2X EQU 1DH,5 SPBRG EQU 99H

ADIF EQU 0CH,6 CCP2Y EQU 1DH,4 ADCON1 EQU 9FH

RCIF EQU 0CH,5 CCP2M3 EQU 1DH,3 PCFG2 EQU 9FH,2

TXIF EQU 0CH,4 CCP2M2 EQU 1DH,2 PCFG1 EQU 9FH,1

SSPIF EQU 0CH,3 CCP2M1 EQU 1DH,1 PCFG0 EQU 9FH,0

CCP1IF EQU 0CH,2 CCP2M0 EQU 1DH,0 PUPOPW EQU 20H

TMR2IF EQU 0CH,1 ADRES EQU 1EH PUPOPS EQU 21H

TMR1IF EQU 0CH,0 ADCON0 EQU 1FH PUPOPP EQU 22H

PIR2 EQU 0DH ADCS1 EQU 1FH,7 PUPOPF EQU 23h

CCP2IF EQU 0DH,0 ADCS0 EQU 1FH,6 ERG EQU 24h

TMR1L EQU 0EH CHS2 EQU 1FH,5 ARG0 EQU 24h

TMR1H EQU 0FH CHS1 EQU 1FH,4 ARG1 EQU 26h

T1CON EQU 10H CHS0 EQU 1FH,3 ARG2 EQU 28h

T1CKPS1 EQU 10H,5 GO_DONE EQU 1FH,2 ARG3 EQU 2Ah

T1CKPS0 EQU 10H,4 ADON EQU 1FH,0 ARG4 EQU 2Ch

T1OSCEN EQU 10H,3 OPTION_R EQU 81H ARG5 EQU 2Eh

T1SYNC EQU 10H,2 RBUP EQU 81H,7 ERRVAR EQU 2Fh

TMR1CS EQU 10H,1 INTEDG EQU 81H,6 ERR_ EQU 2Fh

TMR1ON EQU 10H,0 T0CS EQU 81H,5 TIMERX EQU 30H

TMR2 EQU 11H T0SE EQU 81H,4 DATPTR_ EQU 31h

T2CON EQU 12H PSA EQU 81H,3 :

TOUTPS3 EQU 12H,6 PS2 EQU 81H,2

TOUTPS2 EQU 12H,5 PS1 EQU 81H,1

TOUTPS1 EQU 12H,4 PS0 EQU 81H,0

;--

Appendix I

 DEFAULT.EQU (cont.)

192

:16C76

 :16C77

INDIRECT EQU 00H SSPCON EQU 14H TXIE EQU 8CH,4

TMR0 EQU 01H WCOL EQU 14H,7 SSPIE EQU 8CH,3

RTCC EQU 01H SSPOV EQU 14H,6 CCP1IE EQU 8CH,2

PCL EQU 02H SSPEN EQU 14H,5 TMR2IE EQU 8CH,1

PC EQU 02H CKP EQU 14H,4 TMR1IE EQU 8CH,0

STATUS EQU 03H SSPM3 EQU 14H,3 PIE2 EQU 8DH

IRP EQU 7 SSPM2 EQU 14H,2 EEIE EQU 8DH,4

RP1 EQU 6 SSPM1 EQU 14H,1 BCLIE EQU 8DH,3

RP0 EQU 5 SSPM0 EQU 14H,0 CCP2IE EQU 8DH,0

TO EQU 4 CCPR1L EQU 15H PCON EQU 8EH

PD EQU 3 CCPR1H EQU 16H POR EQU 8EH,1

Z EQU 2 CCP1CON EQU 17H BOR EQU 8EH,0

DC EQU 1 CCP1X EQU 17H,5 PR2 EQU 92H

C EQU 0 CCP1Y EQU 17H,4 SSPADD EQU 93H

FSR EQU 04H CCP1M3 EQU 17H,3 SSPSTAT EQU 94H

PORTA EQU 05H CCP1M2 EQU 17H,2 SMP EQU 94H,7

RA EQU 05H CCP1M1 EQU 17H,1 CKE EQU 94H,6

PORTB EQU 06H CCP1M0 EQU 17H,0 D_A EQU 94H,5

RB EQU 06H RCSTA EQU 18H P EQU 94H,4

PORTC EQU 07H SPEN EQU 18H,7 S EQU 94H,3

RC EQU 07H RX9 EQU 18H,6 R_W EQU 94H,2

PCLATH EQU 0AH SREN EQU 18H,5 UA EQU 94H,1

INTCON EQU 0BH CREN EQU 18H,4 BF EQU 94H,0

GIE EQU 0BH,7 ADDEN EQU 18H,3 TXSTA EQU 98H

PEIE EQU 0BH,6 FERR EQU 18H,2 CSRC EQU 98H,7

T0IE EQU 0BH,5 OERR EQU 18H,1 TX9 EQU 98H,6

INTE EQU 0BH,4 RX9D EQU 18H,0 TXEN EQU 98H,5

RBIE EQU 0BH,3 TXREG EQU 19H SYNC EQU 98H,4

T0IF EQU 0BH,2 RCREG EQU 1AH BRGH EQU 98H,2

INTF EQU 0BH,1 CCPR2L EQU 1BH TRMT EQU 98H,1

RBIF EQU 0BH,0 CCPR2H EQU 1CH TX9D EQU 98H,0

PIR1 EQU 0CH CCP2CON EQU 1DH SPBRG EQU 99H

PSPIF EQU 0CH,7 CCP2X EQU 1DH,5 ADCON1 EQU 9FH

ADIF EQU 0CH,6 CCP2Y EQU 1DH,4 ADFM EQU 9FH,7

RCIF EQU 0CH,5 CCP2M3 EQU 1DH,3 PCFG3 EQU 9FH,3

TXIF EQU 0CH,4 CCP2M2 EQU 1DH,2 PCFG2 EQU 9FH,2

SSPIF EQU 0CH,3 CCP2M1 EQU 1DH,1 PCFG1 EQU 9FH,1

CCP1IF EQU 0CH,2 CCP2M0 EQU 1DH,0 PCFG0 EQU 9FH,0

TMR2IF EQU 0CH,1 ADRES EQU 1EH PUPOPS EQU 6DH

TMR1IF EQU 0CH,0 ADCON0 EQU 1FH PUPOPP EQU 6EH

PIR2 EQU 0DH ADCS1 EQU 1FH,7 PUPOPF EQU 6Fh

EEIF EQU 0DH,4 ADCS0 EQU 1FH,6 ERG EQU 70h

BCLIF EQU 0DH,3 CHS2 EQU 1FH,5 ARG0 EQU 70h

CCP2IF EQU 0DH,0 CHS1 EQU 1FH,4 ARG1 EQU 72h

TMR1L EQU 0EH CHS0 EQU 1FH,3 ARG2 EQU 74h

TMR1H EQU 0FH GO_DONE EQU 1FH,2 ARG3 EQU 76h

T1CON EQU 10H ADON EQU 1FH,0 ARG4 EQU 78h

T1CKPS1 EQU 10H,5 OPTION_R EQU 81H ARG5 EQU 7Ah

T1CKPS0 EQU 10H,4 RBUP EQU 81H,7 ERRVAR EQU 7Bh

Appendix I

 DEFAULT.EQU (cont.)

193

T1OSCEN EQU 10H,3 INTEDG EQU 81H,6 ERR_ EQU 7Bh

T1SYNC EQU 10H,2 T0CS EQU 81H,5 TIMERX EQU 7CH

TMR1CS EQU 10H,1 T0SE EQU 81H,4 DATPTR_ EQU 7Dh

TMR1ON EQU 10H,0 PSA EQU 81H,3 PUPOPW EQU 7FH

TMR2 EQU 11H PS2 EQU 81H,2 :

 T2CON EQU 12H PS1 EQU 81H,1 :16C77

TOUTPS3 EQU 12H,6 PS0 EQU 81H,0 PORTD EQU 08H

TOUTPS2 EQU 12H,5 TRISA EQU 85H RD EQU 08H

TOUTPS1 EQU 12H,4 TRISB EQU 86H PORTE EQU 09H

TOUTPS0 EQU 12H,3 TRISC EQU 87H RE EQU 09H

TMR2ON EQU 12H,2 PIE1 EQU 8CH TRISD EQU 88H

T2CKPS1 EQU 12H,1 PSPIE EQU 8CH,7 TRISE EQU 89H

T2CKPS0 EQU 12H,0 ADIE EQU 8CH,6 :

SSPBUF EQU 13H RCIE EQU 8CH,5

;--

:16C83

:16F83

:16C84

 :16F84

INDIRECT EQU 00H INTCON EQU 0BH WRERR EQU 88H,3

TMR0 EQU 01H GIE EQU 0BH,7 WREN EQU 88H,2

RTCC EQU 01H EEIE EQU 0BH,6 WR! EQU 88H,1

PCL EQU 02H T0IE EQU 0BH,5 RD! EQU 88H,0

PC EQU 02H INTE EQU 0BH,4 EECON2 EQU 89h

STATUS EQU 03H RBIE EQU 0BH,3 PUPOPW EQU 0CH

IRP EQU 7 T0IF EQU 0BH,2 PUPOPS EQU 0DH

RP1 EQU 6 INTF EQU 0BH,1 PUPOPP EQU 0EH

RP0 EQU 5 RBIF EQU 0BH,0 PUPOPF EQU 0FH

TO EQU 4 OPTION_R EQU 81H ERG EQU 10h

PD EQU 3 RBUP EQU 81H,7 ARG0 EQU 10h

Z EQU 2 INTEDG EQU 81H,6 ARG1 EQU 12h

DC EQU 1 T0CS EQU 81H,5 ARG2 EQU 14h

C EQU 0 T0SE EQU 81H,4 ARG3 EQU 16h

FSR EQU 04H PSA EQU 81H,3 ARG4 EQU 18h

PORTA EQU 05H PS2 EQU 81H,2 ARG5 EQU 1Ah

RA EQU 05H PS1 EQU 81H,1 ERRVAR EQU 1Bh

PORTB EQU 06H PS0 EQU 81H,0 ERR_ EQU 1BH

RB EQU 06H TRISA EQU 85H TIMERX EQU 1CH

EEDTA EQU 08h TRISB EQU 86H DATPTR_ EQU 1Dh

EEADR EQU 09h EECON1 EQU 88H :

PCLATH EQU 0Ah EEIF EQU 88H,4

;--

:16F818

 :16F819

INDIRECT EQU 00H T2CKPS1 EQU 12H,1 IRCF2 EQU 8FH,6

TMR0 EQU 01H T2CKPS0 EQU 12H,0 IRCF1 EQU 8FH,5

RTCC EQU 01H SSPBUF EQU 13H IRCF0 EQU 8FH,4

PCL EQU 02H SSPCON EQU 14H IOFS EQU 8FH,2

PC EQU 02H WCOL EQU 14H,7 OSCTUNE EQU 90H

STATUS EQU 03H SSPOV EQU 14H,6 PR2 EQU 92H

IRP EQU 7 SSPEN EQU 14H,5 SSPADD EQU 93H

Appendix I

 DEFAULT.EQU (cont.)

194

RP1 EQU 6 CKP EQU 14H,4 SSPSTAT EQU 94H

RP0 EQU 5 SSPM3 EQU 14H,3 SMP EQU 94H,7

TO EQU 4 SSPM2 EQU 14H,2 CKE EQU 94H,6

PD EQU 3 SSPM1 EQU 14H,1 D_A EQU 94H,5

Z EQU 2 SSPM0 EQU 14H,0 P EQU 94H,4

DC EQU 1 CCPR1L EQU 15H S EQU 94H,3

C EQU 0 CCPR1H EQU 16H R_W EQU 94H,2

FSR EQU 04H CCP1CON EQU 17H UA EQU 94H,1

PORTA EQU 05H CCP1X EQU 17H,5 BF EQU 94H,0

RA EQU 05H CCP1Y EQU 17H,4 ADRESL EQU 9EH

PORTB EQU 06H CCP1M3 EQU 17H,3 ADCON1 EQU 9FH

RB EQU 06H CCP1M2 EQU 17H,2 ADFM EQU 9FH,7

 PCLATH EQU 0AH CCP1M1 EQU 17H,1 ADCS2 EQU 9FH,6

INTCON EQU 0BH CCP1M0 EQU 17H,0 PCFG3 EQU 9FH,3

GIE EQU 0BH,7 ADRESH EQU 1EH PCFG2 EQU 9FH,2

PEIE EQU 0BH,6 ADCON0 EQU 1FH PCFG1 EQU 9FH,1

T0IE EQU 0BH,5 ADCS1 EQU 1FH,7 PCFG0 EQU 9FH,0

INTE EQU 0BH,4 ADCS0 EQU 1FH,6 EEDTA EQU 10CH

RBIE EQU 0BH,3 CHS2 EQU 1FH,5 EEADR EQU 10DH

T0IF EQU 0BH,2 CHS1 EQU 1FH,4 EEDATH EQU 10EH

INTF EQU 0BH,1 CHS0 EQU 1FH,3 EEADRH EQU 10FH

RBIF EQU 0BH,0 GO_DONE EQU 1FH,2 EECON1 EQU 18CH

PIR1 EQU 0CH ADON EQU 1FH,0 EEPGD EQU 18CH,7

ADIF EQU 0CH,6 OPTION_R EQU 81H FREE EQU 18CH,4

SSPIF EQU 0CH,3 RBUP EQU 81H,7 WRERR EQU 18CH,3

CCP1IF EQU 0CH,2 INTEDG EQU 81H,6 WREN EQU 18CH,2

TMR2IF EQU 0CH,1 T0CS EQU 81H,5 WR_ EQU 18CH,1

TMR1IF EQU 0CH,0 T0SE EQU 81H,4 RD_ EQU 18CH,0

PIR2 EQU 0DH PSA EQU 81H,3 EECON2 EQU 18DH

EEIF EQU 0DH,4 PS2 EQU 81H,2 PUPOPS EQU 6DH

TMR1L EQU 0EH PS1 EQU 81H,1 PUPOPP EQU 6EH

TMR1H EQU 0FH PS0 EQU 81H,0 PUPOPF EQU 6Fh

T1CON EQU 10H TRISA EQU 85H ERG EQU 70h

T1CKPS1 EQU 10H,5 TRISB EQU 86H ARG0 EQU 70h

T1CKPS0 EQU 10H,4 PIE1 EQU 8CH ARG1 EQU 72h

T1OSCEN EQU 10H,3 ADIE EQU 8CH,6 ARG2 EQU 74h

T1SYNC EQU 10H,2 SSPIE EQU 8CH,3 ARG3 EQU 76h

TMR1CS EQU 10H,1 CCP1IE EQU 8CH,2 ARG4 EQU 78h

TMR1ON EQU 10H,0 TMR2IE EQU 8CH,1 ARG5 EQU 7Ah

TMR2 EQU 11H TMR1IE EQU 8CH,0 ERRVAR EQU 7Bh

T2CON EQU 12H PIE2 EQU 8DH ERR_ EQU 7Bh

TOUTPS3 EQU 12H,6 EEIE EQU 8DH,4 TIMERX EQU 7CH

TOUTPS2 EQU 12H,5 PCON EQU 8EH DATPTR_ EQU 7Dh

TOUTPS1 EQU 12H,4 POR EQU 8EH,1 PUPOPW EQU 7FH

TOUTPS0 EQU 12H,3 BOR EQU 8EH,0 :

TMR2ON EQU 12H,2 OSCCON EQU 8FH

;--

:16F818

:16F819

INDIRECT EQU 00H T2CKPS0 EQU 12H,0 IRCF0 EQU 8FH,4

TMR0 EQU 01H SSPBUF EQU 13H IOFS EQU 8FH,2

Appendix I

 DEFAULT.EQU (cont.)

195

RTCC EQU 01H SSPCON EQU 14H OSCTUNE EQU 90H

PCL EQU 02H WCOL EQU 14H,7 PR2 EQU 92H

PC EQU 02H SSPOV EQU 14H,6 SSPADD EQU 93H

STATUS EQU 03H SSPEN EQU 14H,5 SSPSTAT EQU 94H

IRP EQU 7 CKP EQU 14H,4 SMP EQU 94H,7

RP1 EQU 6 SSPM3 EQU 14H,3 CKE EQU 94H,6

RP0 EQU 5 SSPM2 EQU 14H,2 D_A EQU 94H,5

TO EQU 4 SSPM1 EQU 14H,1 P EQU 94H,4

PD EQU 3 SSPM0 EQU 14H,0 S EQU 94H,3

Z EQU 2 CCPR1L EQU 15H R_W EQU 94H,2

DC EQU 1 CCPR1H EQU 16H UA EQU 94H,1

C EQU 0 CCP1CON EQU 17H BF EQU 94H,0

FSR EQU 04H CCP1X EQU 17H,5 ADRESL EQU 9EH

PORTA EQU 05H CCP1Y EQU 17H,4 ADCON1 EQU 9FH

RA EQU 05H CCP1M3 EQU 17H,3 ADFM EQU 9FH,7

 PORTB EQU 06H CCP1M2 EQU 17H,2 ADCS2 EQU 9FH,6

RB EQU 06H CCP1M1 EQU 17H,1 PCFG3 EQU 9FH,3

PCLATH EQU 0AH CCP1M0 EQU 17H,0 PCFG2 EQU 9FH,2

INTCON EQU 0BH ADRESH EQU 1EH PCFG1 EQU 9FH,1

GIE EQU 0BH,7 ADCON0 EQU 1FH PCFG0 EQU 9FH,0

PEIE EQU 0BH,6 ADCS1 EQU 1FH,7 EEDTA EQU 10CH

T0IE EQU 0BH,5 ADCS0 EQU 1FH,6 EEADR EQU 10DH

INTE EQU 0BH,4 CHS2 EQU 1FH,5 EEDATH EQU 10EH

RBIE EQU 0BH,3 CHS1 EQU 1FH,4 EEADRH EQU 10FH

T0IF EQU 0BH,2 CHS0 EQU 1FH,3 EECON1 EQU 18CH

INTF EQU 0BH,1 GO_DONE EQU 1FH,2 EEPGD EQU 18CH,7

RBIF EQU 0BH,0 ADON EQU 1FH,0 FREE EQU 18CH,4

PIR1 EQU 0CH OPTION_R EQU 81H WRERR EQU 18CH,3

ADIF EQU 0CH,6 RBUP EQU 81H,7 WREN EQU 18CH,2

SSPIF EQU 0CH,3 INTEDG EQU 81H,6 WR_ EQU 18CH,1

CCP1IF EQU 0CH,2 T0CS EQU 81H,5 RD_ EQU 18CH,0

TMR2IF EQU 0CH,1 T0SE EQU 81H,4 EECON2 EQU 18DH

TMR1IF EQU 0CH,0 PSA EQU 81H,3 PRTTAB EQU 68H

PIR2 EQU 0DH PS2 EQU 81H,2 PUPOPS EQU 6DH

EEIF EQU 0DH,4 PS1 EQU 81H,1 PUPOPP EQU 6EH

TMR1L EQU 0EH PS0 EQU 81H,0 PUPOPF EQU 6Fh

TMR1H EQU 0FH TRISA EQU 85H ERG EQU 70h

T1CON EQU 10H TRISB EQU 86H ARG0 EQU 70h

T1CKPS1 EQU 10H,5 PIE1 EQU 8CH ARG1 EQU 72h

T1CKPS0 EQU 10H,4 ADIE EQU 8CH,6 ARG2 EQU 74h

T1OSCEN EQU 10H,3 SSPIE EQU 8CH,3 ARG3 EQU 76h

T1SYNC EQU 10H,2 CCP1IE EQU 8CH,2 ARG4 EQU 78h

TMR1CS EQU 10H,1 TMR2IE EQU 8CH,1 ARG5 EQU 7Ah

TMR1ON EQU 10H,0 TMR1IE EQU 8CH,0 ERRVAR EQU 7Bh

TMR2 EQU 11H PIE2 EQU 8DH ERR_ EQU 7Bh

T2CON EQU 12H EEIE EQU 8DH,4 TIMERX EQU 7CH

TOUTPS3 EQU 12H,6 PCON EQU 8EH DATPTR_ EQU 7Dh

TOUTPS2 EQU 12H,5 POR EQU 8EH,1 PUPOPW EQU 7FH

TOUTPS1 EQU 12H,4 BOR EQU 8EH,0 :

TOUTPS0 EQU 12H,3 OSCCON EQU 8FH

TMR2ON EQU 12H,2 IRCF2 EQU 8FH,6

Appendix I

 DEFAULT.EQU (cont.)

196

T2CKPS1 EQU 12H,1 IRCF1 EQU 8FH,5

;--

:16F870

:16F871

 :16F872

INDIRECT EQU 00H TOUTPS0 EQU 12H,3 POR EQU 8EH,1

TMR0 EQU 01H TMR2ON EQU 12H,2 BOR EQU 8EH,0

RTCC EQU 01H T2CKPS1 EQU 12H,1 SSPCON2 EQU 91H

PCL EQU 02H T2CKPS0 EQU 12H,0 GCEN EQU 91H,7

PC EQU 02H SSPBUF EQU 13H ACKSTAT EQU 91H,6

STATUS EQU 03H SSPCON EQU 14H ACKDT EQU 91H,5

IRP EQU 7 WCOL EQU 14H,7 ACKEN EQU 91H,4

RP1 EQU 6 SSPOV EQU 14H,6 RCEN EQU 91H,3

RP0 EQU 5 SSPEN EQU 14H,5 REN EQU 91H,2

TO EQU 4 CKP EQU 14H,4 RSEN EQU 91H,1

PD EQU 3 SSPM3 EQU 14H,3 SEN EQU 91H,0

Z EQU 2 SSPM2 EQU 14H,2 PR2 EQU 92H

DC EQU 1 SSPM1 EQU 14H,1 SSPADD EQU 93H

C EQU 0 SSPM0 EQU 14H,0 SSPSTAT EQU 94H

FSR EQU 04H CCPR1L EQU 15H SMP EQU 94H,7

PORTA EQU 05H CCPR1H EQU 16H CKE EQU 94H,6

RA EQU 05H CCP1CON EQU 17H D_A EQU 94H,5

PORTB EQU 06H CCP1X EQU 17H,5 P EQU 94H,4

RB EQU 06H CCP1Y EQU 17H,4 S EQU 94H,3

PORTC EQU 07H CCP1M3 EQU 17H,3 R_W EQU 94H,2

RC EQU 07H CCP1M2 EQU 17H,2 UA EQU 94H,1

PCLATH EQU 0AH CCP1M1 EQU 17H,1 BF EQU 94H,0

INTCON EQU 0BH CCP1M0 EQU 17H,0 ADRESL EQU 9EH

GIE EQU 0BH,7 ADRESH EQU 1EH ADCON1 EQU 9FH

PEIE EQU 0BH,6 ADCON0 EQU 1FH ADFM EQU 9FH,7

T0IE EQU 0BH,5 ADCS1 EQU 1FH,7 PCFG3 EQU 9FH,3

INTE EQU 0BH,4 ADCS0 EQU 1FH,6 PCFG2 EQU 9FH,2

RBIE EQU 0BH,3 CHS2 EQU 1FH,5 PCFG1 EQU 9FH,1

T0IF EQU 0BH,2 CHS1 EQU 1FH,4 PCFG0 EQU 9FH,0

INTF EQU 0BH,1 CHS0 EQU 1FH,3 EEDTA EQU 10CH

RBIF EQU 0BH,0 GO_DONE EQU 1FH,2 EEADR EQU 10DH

PIR1 EQU 0CH ADON EQU 1FH,0 EEDATH EQU 10EH

PSPIF EQU 0CH,7 OPTION_R EQU 81H EEADRH EQU 10FH

ADIF EQU 0CH,6 RBUP EQU 81H,7 EECON1 EQU 18CH

RCIF EQU 0CH,5 INTEDG EQU 81H,6 EEPGD EQU 18CH,7

TXIF EQU 0CH,4 T0CS EQU 81H,5 WRERR EQU 18CH,3

SSPIF EQU 0CH,3 T0SE EQU 81H,4 WREN EQU 18CH,2

CCP1IF EQU 0CH,2 PSA EQU 81H,3 WR_ EQU 18CH,1

TMR2IF EQU 0CH,1 PS2 EQU 81H,2 RD_ EQU 18CH,0

TMR1IF EQU 0CH,0 PS1 EQU 81H,1 EECON2 EQU 18DH

PIR2 EQU 0DH PS0 EQU 81H,0 PUPOPS EQU 6DH

EEIF EQU 0DH,4 TRISA EQU 85H PUPOPP EQU 6EH

BCLIF EQU 0DH,3 TRISB EQU 86H PUPOPF EQU 6Fh

CCP2IF EQU 0DH,0 TRISC EQU 87H ERG EQU 70h

TMR1L EQU 0EH PIE1 EQU 8CH ARG0 EQU 70h

TMR1H EQU 0FH PSPIE EQU 8CH,7 ARG1 EQU 72h

Appendix I

 DEFAULT.EQU (cont.)

197

T1CON EQU 10H ADIE EQU 8CH,6 ARG2 EQU 74h

T1CKPS1 EQU 10H,5 RCIE EQU 8CH,5 ARG3 EQU 76h

T1CKPS0 EQU 10H,4 TXIE EQU 8CH,4 ARG4 EQU 78h

T1OSCEN EQU 10H,3 SSPIE EQU 8CH,3 ARG5 EQU 7Ah

T1SYNC EQU 10H,2 CCP1IE EQU 8CH,2 ERRVAR EQU 7Bh

TMR1CS EQU 10H,1 TMR2IE EQU 8CH,1 ERR_ EQU 7Bh

TMR1ON EQU 10H,0 TMR1IE EQU 8CH,0 TIMERX EQU 7CH

TMR2 EQU 11H PIE2 EQU 8DH DATPTR_ EQU 7Dh

T2CON EQU 12H EEIE EQU 8DH,4 PUPOPW EQU 7FH

TOUTPS3 EQU 12H,6 BCLIE EQU 8DH,3 :

TOUTPS2 EQU 12H,5 CCP2IE EQU 8DH,0

TOUTPS1 EQU 12H,4 PCON EQU 8EH

;--

:16F873

:16F873A

:16F874

:16F874A

:16F876

:16F876A

:16F877

 :16F877A

INDIRECT EQU 00H CCP1CON EQU 17H SSPADD EQU 93H

TMR0 EQU 01H CCP1X EQU 17H,5 SSPSTAT EQU 94H

RTCC EQU 01H CCP1Y EQU 17H,4 SMP EQU 94H,7

PCL EQU 02H CCP1M3 EQU 17H,3 CKE EQU 94H,6

PC EQU 02H CCP1M2 EQU 17H,2 D_A EQU 94H,5

STATUS EQU 03H CCP1M1 EQU 17H,1 P EQU 94H,4

IRP EQU 7 CCP1M0 EQU 17H,0 S EQU 94H,3

RP1 EQU 6 RCSTA EQU 18H R_W EQU 94H,2

RP0 EQU 5 SPEN EQU 18H,7 UA EQU 94H,1

TO EQU 4 RX9 EQU 18H,6 BF EQU 94H,0

PD EQU 3 SREN EQU 18H,5 TXSTA EQU 98H

Z EQU 2 CREN EQU 18H,4 CSRC EQU 98H,7

DC EQU 1 ADDEN EQU 18H,3 TX9 EQU 98H,6

C EQU 0 FERR EQU 18H,2 TXEN EQU 98H,5

FSR EQU 04H OERR EQU 18H,1 SYNC EQU 98H,4

PORTA EQU 05H RX9D EQU 18H,0 BRGH EQU 98H,2

RA EQU 05H TXREG EQU 19H TRMT EQU 98H,1

PORTB EQU 06H RCREG EQU 1AH TX9D EQU 98H,0

RB EQU 06H CCPR2L EQU 1BH SPBRG EQU 99H

PORTC EQU 07H CCPR2H EQU 1CH ADRESL EQU 9EH

RC EQU 07H CCP2CON EQU 1DH ADCON1 EQU 9FH

PCLATH EQU 0AH CCP2X EQU 1DH,5 ADFM EQU 9FH,7

INTCON EQU 0BH CCP2Y EQU 1DH,4 PCFG3 EQU 9FH,3

GIE EQU 0BH,7 CCP2M3 EQU 1DH,3 PCFG2 EQU 9FH,2

PEIE EQU 0BH,6 CCP2M2 EQU 1DH,2 PCFG1 EQU 9FH,1

T0IE EQU 0BH,5 CCP2M1 EQU 1DH,1 PCFG0 EQU 9FH,0

INTE EQU 0BH,4 CCP2M0 EQU 1DH,0 EEDTA EQU 10CH

RBIE EQU 0BH,3 ADRESH EQU 1EH EEADR EQU 10DH

T0IF EQU 0BH,2 ADCON0 EQU 1FH EEDATH EQU 10EH

INTF EQU 0BH,1 ADCS1 EQU 1FH,7 EEADRH EQU 10FH

Appendix I

 DEFAULT.EQU (cont.)

198

RBIF EQU 0BH,0 ADCS0 EQU 1FH,6 EECON1 EQU 18CH

PIR1 EQU 0CH CHS2 EQU 1FH,5 EEPGD EQU 18CH,7

PSPIF EQU 0CH,7 CHS1 EQU 1FH,4 WRERR EQU 18CH,3

ADIF EQU 0CH,6 CHS0 EQU 1FH,3 WREN EQU 18CH,2

RCIF EQU 0CH,5 GO_DONE EQU 1FH,2 WR_ EQU 18CH,1

TXIF EQU 0CH,4 ADON EQU 1FH,0 RD_ EQU 18CH,0

SSPIF EQU 0CH,3 OPTION_R EQU 81H EECON2 EQU 18DH

CCP1IF EQU 0CH,2 RBUP EQU 81H,7 PUPOPS EQU 6DH

TMR2IF EQU 0CH,1 INTEDG EQU 81H,6 PUPOPP EQU 6EH

TMR1IF EQU 0CH,0 T0CS EQU 81H,5 PUPOPF EQU 6Fh

PIR2 EQU 0DH T0SE EQU 81H,4 ERG EQU 70h

EEIF EQU 0DH,4 PSA EQU 81H,3 ARG0 EQU 70h

BCLIF EQU 0DH,3 PS2 EQU 81H,2 ARG1 EQU 72h

CCP2IF EQU 0DH,0 PS1 EQU 81H,1 ARG2 EQU 74h

TMR1L EQU 0EH PS0 EQU 81H,0 ARG3 EQU 76h

TMR1H EQU 0FH TRISA EQU 85H ARG4 EQU 78h

T1CON EQU 10H TRISB EQU 86H ARG5 EQU 7Ah

T1CKPS1 EQU 10H,5 TRISC EQU 87H ERRVAR EQU 7Bh

T1CKPS0 EQU 10H,4 PIE1 EQU 8CH ERR_ EQU 7Bh

T1OSCEN EQU 10H,3 PSPIE EQU 8CH,7 TIMERX EQU 7CH

T1SYNC EQU 10H,2 ADIE EQU 8CH,6 DATPTR_ EQU 7Dh

TMR1CS EQU 10H,1 RCIE EQU 8CH,5 PUPOPW EQU 7FH

TMR1ON EQU 10H,0 TXIE EQU 8CH,4 :

 TMR2 EQU 11H SSPIE EQU 8CH,3 : 16F871

 T2CON EQU 12H CCP1IE EQU 8CH,2 : 16F874

 TOUTPS3 EQU 12H,6 TMR2IE EQU 8CH,1 : 16F874A

 TOUTPS2 EQU 12H,5 TMR1IE EQU 8CH,0 : 16F877

 TOUTPS1 EQU 12H,4 PIE2 EQU 8DH : 16F877A

TOUTPS0 EQU 12H,3 EEIE EQU 8DH,4 PORTD EQU 08H

TMR2ON EQU 12H,2 BCLIE EQU 8DH,3 RD EQU 08H

T2CKPS1 EQU 12H,1 CCP2IE EQU 8DH,0 PORTE EQU 09H

T2CKPS0 EQU 12H,0 PCON EQU 8EH RE EQU 09H

SSPBUF EQU 13H POR EQU 8EH,1 TRISD EQU 88H

SSPCON EQU 14H BOR EQU 8EH,0 TRISE EQU 89H

WCOL EQU 14H,7 SSPCON2 EQU 91H :

 SSPOV EQU 14H,6 GCEN EQU 91H,7 : 16F873A

 SSPEN EQU 14H,5 ACKSTAT EQU 91H,6 : 16F874A

 CKP EQU 14H,4 ACKDT EQU 91H,5 : 16F876A

 SSPM3 EQU 14H,3 ACKEN EQU 91H,4 : 16F877A

SSPM2 EQU 14H,2 RCEN EQU 91H,3 CMCON EQU 9CH

SSPM1 EQU 14H,1 REN EQU 91H,2 CVRCON EQU 9DH

SSPM0 EQU 14H,0 RSEN EQU 91H,1 :

CCPR1L EQU 15H SEN EQU 91H,0

CCPR1H EQU 16H PR2 EQU 92H

;--

Appendix Ia

 Error codes

199

label, symbol or keyword already defined

symbol table full

= expected

TO expected

too many FOR-NEXT nested

wrong FOR-NEXT nested

NEXT without FOR

label not defined

too many GOSUBs nested

pin number not available

port not available

only variables allowed or wrong variable

variable already defined

too much or too less arguments

THEN expected

only 8 bit variables and values allowed

syntax error

(maximale) Zeitangaben nicht aufl"sbar

must be a boolean constant value

symbol not defined

command for PIC16C8x only

command for PIC16C7x only

AD converter not configured

only 16 bits variables

command for PIC16C7x and PIC16C8x only

target address beyond available area

program too big to fit

watchdog is off

too many functions in run time library. (page to small)

error in lcd initialisation

ENDASM missing

error in I2C initialisation

already initialized

format error

only constant values allowed

only 8 bits variables

wrong interrupt handling

warning! time base <> 1msec within WAIT or 100?s within DELAY

compiling file

building symbol table

linking library

saving...

no error found by compiler

file not found

compiling line

array error

no direct transfer from array to array allowed

concatening too many lines (200 characters max.)

matrix keyboard not initialized

error in line

unkown CPU

Appendix Ia

 Error codes (cont.)

200

warnung in line

hey, a little bit more faster? It is your responsibility.

too many data items

this variable must be in bank 0

instruction wrong

file "*.PIC" not found

file "*.EQU" not found

instruction not for 12X5xx and 16C5x

xtal frquency too low

constant exceeds limit

ARITH32 variable not defined

Appendix III

 Supported PICs

201

iL_BAS16SES:

PIC 16F628 and 16F84

iL_BAS16SEP:

PIC 12F629, 16F627, 16F628, 16F84, 16F877

iL_BAS16STD:

see www.iL-online.de

iL_BAS16PRO

see www.iL-online.de

Appendix IV

 FAQs

202

For FAQs please see www.iL-online.de

